DOI QR코드

DOI QR Code

Application of Model of Plant Population Structure and Phenotypic Divergence

  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • Received : 2010.01.11
  • Accepted : 2011.01.05
  • Published : 2011.02.28

Abstract

In application and discussion of population structure and phenotypic divergence in plant community, the classic Lotka-Volterra models of competition and spatial model are conceived as a mechanism that is composed by multiple interacting processes. Both the Lotka-Volterra and spatial simulation formulae predict that species diversity increases with genotypic richness (GR). The two formulae are also in agreement that species diversity generally decreases within increasing niche breadth (NB) and increases with increasing potential genotypic range (PGR). Across the entire parameter space in the Lotka-Volterra model and most of the parameter space in the spatial simulations, variance in community composition decreased with increasing genotypic richness. This was, in large part, a consequence of selecting genotypes randomly from a set pool.

Keywords

References

  1. Benton, T. G., Grant, A., 2000, Evolutionary fitness in ecology: comparing measures of fitness in stochastic, density-dependent environments, Evol. Ecol. Res., 2, 769-789.
  2. Colwell, R. K., Hurtt, G. C., 1994, Nonbiological gradients in species richness and a spurious Rapoport effect, Am. Nat., 144, 570-595. https://doi.org/10.1086/285695
  3. Colwell, R. K., Lees, D. C., 2000, The mid-domain effect: geometric constraints on the geography of species richness, Trends in Ecol. & Evol., 15, 70-76. https://doi.org/10.1016/S0169-5347(99)01767-X
  4. Conover, D. O., Schultz, E. T., 1995, Phenotypic similarity and the evolutionary significance of countergradient variation, Trends in Ecol. & Evol., 10, 248-252. https://doi.org/10.1016/S0169-5347(00)89081-3
  5. Currie, D. J., Francis, A. P., Kerr, J. T., 1999, Some general propositions about the study of spatial patterns of species richness, Ecoscience, 6, 392-399. https://doi.org/10.1080/11956860.1999.11682541
  6. Jonzen, N., Wilcox, C., Possingham, H. P., 2004, Habitat selection and population regulation in temporally fluctuating environments, Am. Nat., 164, 103-114. https://doi.org/10.1086/424532
  7. MacArthur, R. H., 1965, Patterns of species diversity, Biol. Rev., 40, 510-533. https://doi.org/10.1111/j.1469-185X.1965.tb00815.x
  8. McGuigan, K., Chenoweth, S. F., Blows, M. W., 2005, Phenotypic divergence along lines of genetic variance, Am. Nat., 165, 32-43. https://doi.org/10.1086/426600
  9. Mouseau, T. A., Sinervo, B., Endler, J. A., 2000, Adaptive genetic variation in the wild, Oxford University Press, Oxford.
  10. Neuhauser, C., Andow, D. A., Heipel, G. E., May, G., Shaw, R. G., Wagenius, S., 2003, Community genetics: expanding the synthesis of ecology and genetics, Ecol., 84, 545-558. https://doi.org/10.1890/0012-9658(2003)084[0545:CGETSO]2.0.CO;2
  11. Pigliucci, M., Murrena, C. J., 2003. Perspective: genetic assimilation and a possible evolutionary paradox: can macroevolution sometimes be so fast as to pass us by?, Evolution, 57, 1455-1464. https://doi.org/10.1111/j.0014-3820.2003.tb00354.x
  12. Price, T. D., Qvarnstrom, A., Irwin, D. E., 2003, The role of phenotypic plasticity in driving genetic evolution, Proc. Royal Soc. London B, 270, 1433-1440. https://doi.org/10.1098/rspb.2003.2372
  13. Rahbek, C., Graves, G. R., 2000, Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale, Proc. Royal Soc. London, 267, 2259-2265. https://doi.org/10.1098/rspb.2000.1277
  14. Smouse, P. E., Long, J. C., Sokal, R. R., 1986, Multiple regression and correlation extensions of the Mantel test of matrix correspondence, Syst. Zool., 35, 627-632. https://doi.org/10.2307/2413122
  15. Soltis, D. E., Haufler, C. H., Darrow, D. C., Gastony, G. J., 1983, Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules, Am. Fern J., 73, 9-27. https://doi.org/10.2307/1546611
  16. Taper, M. L., Case, T. J., 1992, Coevolution among competitors, Evol. Biol., 8, 63-109.
  17. Tilman, D., 2004, Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly, Proc. Acad. Sci. USA., 101, 105-119. https://doi.org/10.1073/pnas.2436461100
  18. Vellend, M., 2005, Species diversity and genetic diversity: parallel process and correlated patterns, Am. Nat., 166, 199-215. https://doi.org/10.1086/431318
  19. Vellend, M., 2006, The consequences of genetic diversity in competitive communities, Ecol., 87, 304-311. https://doi.org/10.1890/05-0173
  20. Waddington, C. H., 1961, Genetic assimilation, Advanced in Genetics, 10, 257-290. https://doi.org/10.1016/S0065-2660(08)60119-4
  21. West-Eberhard, M. J., 2003, Developmental plasticity and evolution, Oxford University Press, Oxford, 816.
  22. Whittaker, R. J., Willis, K. J., Field, R., 2001, Scale and species richness: toward a general hierarchial theory of species diversity, J. Biogeography, 28, 453-470. https://doi.org/10.1046/j.1365-2699.2001.00563.x