• Title/Summary/Keyword: Local contrast method

Search Result 195, Processing Time 0.03 seconds

Image Enhancement Based on Local Histogram Specification (로컬 히스토그램 명세화에 기반한 화질 개선)

  • Khusanov, Ulugbek;Lee, Chang-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this paper we propose an image enhancement technique based on histogram specification method over local overlapping regions referred as Local Histogram Specification. First, both reference and original images are splitted into local regions that each overlaps half of its adjacent regions and general histogram specification method is used between corresponding local regions of reference and original image. However it produces noticeable boundary effects. Linear weighted image blending method is used to reduce this effect in order to make seamless image and we also proposed new technique dealing with over-enhanced contrast areas. We satisfied with our experimental results that showed better enhancement accuracy and less noise amplifications compared to other well-known image enhancement methods. We conclude that the proposed method is well suited for motion detection systems as a responsible part to overcome sudden illumination changes.

Method for Local Contrast Control in DCT Domain (DCT영역에서의 국부 Contrast 조절 기법)

  • Tran, Nhat Huy;Minh, Trung Bui;Kim, Won-Ha;Kim, Seon-Guk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.8-11
    • /
    • 2013
  • We implement the foveation and frequency sensitivity feature of human visual system in discrete cosine transform (DCT) domain. Resolution of human visual perception decays as distance from the eye-focused point, known as foveation property, and the middle frequency components give most pleasant image quality to human than the low and high frequency components, which is the frequency sensitivity property of human visual system. For satisfying the foveation property, we enhanced the local contrast at the focused regions and smoothed local contrast at the non-focused regions in the DCT domain without bringing the blocking and ringing artifacts. Moreover, the energies at each DCT frequency components is modified with various degree to fulfill the frequency sensitivity property. The proposed method is verified by the subjective and objective evaluations that it can the improve the human perceptual visual quality.

  • PDF

Local Histogram Equalization using Illumination Information (광원 정보를 이용한 지역 히스토그램 평활화 방법)

  • Kang, Hee;Song, Ki Sun;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.155-164
    • /
    • 2014
  • Local histogram equalization is one of the most popular ways of enhancing the local brightness features of an input image. However, local histogram equalization reveals some problems. First, undesired artifacts are produced by over-enhancing the local features. Second, the enhancement of local features does not always result in global contrast enhancement. To cope with these problems, we propose an illumination driven local histogram equalization method. First, to estimate the illumination information, the proposed method combines the input image and the blurred image produced through the process of the down-sampling and the up-sampling. Next, the proposed method adaptively adjusts the mapping function estimated by the local histogram equalization using the information of the illumination. As a result, the proposed illumination information driven local histogram equalization method simultaneously enhances the global and the local contrast levels while preventing any local artifacts. Experimental results show that the proposed algorithm outperforms the conventional methods on objective and subjective criteria.

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

LCD contrast ratio enhancement method using Carbon Nanotube Back Light Unit and Local Dimming (CNT-BLU Local Dimming 구동을 이용한 LCD Contrast 향상 방법)

  • Min, K.W.;Chung, D.S.;Song, B.G.;Kim, S.L.;Kang, H.S.;Baik, C.W.;Jeong, T.W.;Kim, J.W.;Jin, Y.W.;Cho, J.D.
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.971-972
    • /
    • 2006
  • We have demonstrated Carbon Nanotube Back Light Unit (CNT-BLU) which has a triode structure. Local dimming scheme was introduced to the BLU driving system. With this driving method, contrast ratio enhanced 20 times higher than that of conventional Cold Cathode Fluorescent Lamp (CCFL) BLU.

  • PDF

Contrast Enhancement for Segmentation of Hippocampus on Brain MR Images

  • Sengee, Nyamlkhagva;Sengee, Altansukh;Adiya, Enkhbolor;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1409-1416
    • /
    • 2012
  • An image segmentation result depends on pre-processing steps such as contrast enhancement, edge detection, and smooth filtering etc. Especially medical images are low contrast and contain some noises. Therefore, the contrast enhancement and noise removal techniques are required in the pre-processing. In this study, we present an extension by a novel histogram equalization in which both local and global contrast is enhanced using neighborhood metrics. When checking neighborhood information, filters can simultaneously improve image quality. Most important is that original image information can be used for both global brightness preserving and local contrast enhancement, and image quality improvement filtering. Our experiments confirmed that the proposed method is more effective than other similar techniques reported previously.

A novel hybrid method for robust infrared target detection

  • Wang, Xin;Xu, Lingling;Zhang, Yuzhen;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5006-5022
    • /
    • 2017
  • Effect and robust detection of targets in infrared images has crucial meaning for many applications, such as infrared guidance, early warning, and video surveillance. However, it is not an easy task due to the special characteristics of the infrared images, in which the background clutters are severe and the targets are weak. The recent literature demonstrates that sparse representation can help handle the detection problem, however, the detection performance should be improved. To this end, in this text, a hybrid method based on local sparse representation and contrast is proposed, which can effectively and robustly detect the infrared targets. First, a residual image is calculated based on local sparse representation for the original image, in which the target can be effectively highlighted. Then, a local contrast based method is adopted to compute the target prediction image, in which the background clutters can be highly suppressed. Subsequently, the residual image and the target prediction image are combined together adaptively so as to accurately and robustly locate the targets. Based on a set of comprehensive experiments, our algorithm has demonstrated better performance than other existing alternatives.

An Efficient Binarization Method for Vehicle License Plate Character Recognition

  • Yang, Xue-Ya;Kim, Kyung-Lok;Hwang, Byung-Kon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1649-1657
    • /
    • 2008
  • In this paper, to overcome the failure of binarization for the characters suffered from low contrast and non-uniform illumination in license plate character recognition system, we improved the binarization method by combining local thresholding with global thresholding and edge detection. Firstly, apply the local thresholding method to locate the characters in the license plate image and then get the threshold value for the character based on edge detector. This method solves the problem of local low contrast and non-uniform illumination. Finally, back-propagation Neural Network is selected as a powerful tool to perform the recognition process. The results of the experiments i1lustrate that the proposed binarization method works well and the selected classifier saves the processing time. Besides, the character recognition system performed better recognition accuracy 95.7%, and the recognition speed is controlled within 0.3 seconds.

  • PDF

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid (특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬)

  • Ha, Changwoo;Choi, Changryoul;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.928-937
    • /
    • 2013
  • This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

Image Contrast Enhancement Technique for Local Dimming Backlight of Small-sized Mobile Display (소형 모바일 디스플레이의 Local Dimming 백라이트를 위한 영상 컨트라스트 향상 기법)

  • Chung, Jin-Young;Yun, Ki-Bang;Kim, Ki-Doo
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.57-65
    • /
    • 2009
  • This paper presents the image contrast enhancement technique suitable for local dimming backlight of small-sized mobile display while achieving the reduction of the power consumption. In addition to the large-sized TFT-LCD, small-sized one has adopted LED for backlight. Since, conventionally, LED was mounted on the side edge of a display panel, global dimming method has been widely used. However, recently, new advanced method of local dimming by placing the LED to the backside of the display panel and it raised the necessity of sub-blocked processing after partitioning the target image. When the sub-blocked image has low brightness, the supply current of a backlight LED is reduced, which gives both enhancement of contrast ratio and power consumption reduction. In this paper, we propose simple and improved image enhancement algorithm suitable for the small-sized mobile display. After partitioning the input image by equal sized blocks and analyzing the pixel information in each block, we realize the primary contrast enhancement by independently processing the sub-blocks using the information such as histogram, mean, and standard deviation values of luminance(Y) component. And then resulting information is transferred to each backlight control unit for local dimming to realize the secondary contrast enhancement as well as reduction of power consumption.