• Title/Summary/Keyword: Load types

Search Result 2,087, Processing Time 0.03 seconds

Stress Analysis of LOWER ARM for Change of Section Shape(I) (단면 형상의 변화에 따른 LOWER ARM의 응력 해석(I))

  • 박영철;윤두표;한근조;배명호;진두병;이범재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Stress distribution analysis was implemented by using finite element method for the lower arm connecting Independent front suspension. Results were obtained for the 8 load conditions and for the 3 types of section (I, H and H+I). On the basis of it, the shape and dimensions of lower arm were optimized. Finally it was pointed out that the H type has an most satisfied strength, among 3 section types and highest safety factor and yield strength in each case of load condition.

  • PDF

A Study on the Cost Effective DSM Method for Lighting Power Control through Pilot Test Based on Pre-Verified Methodologies (다양한 형태의 조명(형광등) 전력제어 실증시험을 통한 비용효과적인 전력수요관리방법 도출)

  • Yang, Seung-Kwon;Kim, Dae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.7-13
    • /
    • 2013
  • The portion of lighting power consumption for our country is up to 20~30% of the total amount. Currently, most of the DSM(Demand side management) of lighting power is delivered in supply of high efficient lighting to customers. On the contrary, applications of lighting power to power load leveling are still rare. In this paper, the simulations for various control types of lighting power for load leveling are tried, and we obtained the cost effective and optimal control method through that. This simulation was executed in test office with fluorescent light by us based on applying 8 control types(on, off & dimming), considering customers' satisfaction, for instance, minimum intensity of illumination allowed. According to the result of this test, we found that mixed type(chessboard(on-off) plus dimming control(10%)) is most effective.

Analysis of Crosshead-pin Bearing with Various Oil Groove Shape for Marine Engine (박용엔진용 크로스헤드 핀 베어링의 급유 형사에 따른 윤활특성 해석)

  • 하양협;이득우;김창희;김정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.578-583
    • /
    • 1997
  • Abstract-Crosshead bearing in two-stroke marine diesel engine is operated under quite severe condition since the load on the bearing is sybject to the loading in a unidirectional and the sliding speed is very slow and oscillatory. So it is very difficult to form oil film and maintain the load. In this paper, two types of bearing are compared. One has large sized oil pocket and the seleted as multi-small oil grooves. Bearing clearance, oil inlet oressure and bearing types are selected as analysis parameters. Loci of journal center are presented to compare several cases. It is found that bearing clearance and shape affect to minimum film thickness.

  • PDF

Comparison of the Energy Load according to the Balcony Types and Blind Installation (발코니 유형 및 블라인드 설치 유무에 따른 에너지 부하량 비교)

  • Lee, Jun-Gi;Lee, Gab-Taek;Lee, Kyung-Hee
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • We reviewed annual energy consumption for lighting, cooling and heating in relation to different types of office buildings and locations of window shading devices. Modeling of non-extensible and extensible offices was conducted using the Design Builder program, and simulations were conducted with window shading devices installed in different location.

Prediction of Permanent Deformation in Asphalt Concrete Using Hierarchical Models (계층 모델을 이용한 아스팔트 콘크리트의 영구 변형 예측)

  • Li, Qiang;Lee, Hyun-Jong;Hwang, Eui-Yoon
    • 한국도로학회:학술대회논문집
    • /
    • 2010.09a
    • /
    • pp.99-107
    • /
    • 2010
  • A permanent deformation model was developed in this study based on the shear properties of asphalt mixtures such as cohesion and friction angle. Triaxial compressive strength (TCS) and repeated load permanent deformation (RLPD) tests on the three types of asphalt mixtures are performed at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. It is observed from the tests results that the ratio of shear stress to strength accurately identifies the mixture rutting performance. It could take care of not only mixture types but also load and temperature conditions dependences. Three different versions of the permanent deformation model based on different input levels are proposed and verified using the tests data. The proposed model based on the ratio of shear stress to strength can successfully predict the permanent deformation of various asphalt mixtures all the way up to the 10% of permanent strain including all three stages of permanent deformation in a wide range of loading and temperature conditions without changing model coefficients.

  • PDF

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

A Load Balancing Problem among Operators in a Nonidentical Parallel Machine Shop Considering Operator Sharing (작업자 공유가 가능한 이기종 병렬기계 작업장에서 작업자 부하균형 문제)

  • 문덕희;김대경
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.41-52
    • /
    • 1999
  • In this paper, a load balancing problem among operators is considered, when one or more machines can be assigned to an operator. The machines are grouped into two types and there are more than one machines in each group. The type of machine in which a job can be processed, is determined. However, an operator can handle both types of machine. The elementary operations of a job are classified into three classes : machine-controlled elements, operator-controlled elements and machine/operator- controlled elements. The objective is to balance the workloads among operators under the constraints of available machine-time and operator-time. A heuristic solution procedure is suggested for allocating jobs to machines and allocating machines to operators. The performance of the algorithm is evaluated with various data set.

  • PDF

Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Considering Stress Concentration at Weld Toe (응력집중을 고려한 십자형 필렛 용접재의 피로강도 평가)

  • Kim D. J.;Seck C. S.;Koo J. M.;Park J. S.;Seo J. W.;Goo B. C.
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.222-227
    • /
    • 2004
  • Under cyclic loading, the fatigue failures of welded joints occur at weld toes which induce stress concentration by weld shape. So we need to obtain the peak stress and the S-N curve to assess the fatigue strength of welded joints. However the measurement of peak stress is of high uncertainty and low reproducibility, so we use nominal stress instead in fatigue tests of welded joints. In this study, fatigue tests to obtain S-N curves and FE analyses to obtain stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curves to that based on peak stress using the hot-spot stress concept. From the analyses of the S-N curves obtained, we have concluded that there is a need to develop a new method to evaluate the fatigue life.

  • PDF

A Study on the Improvement of Bearing Capacity Prediction Equation for Auger-drilled Piling (매입말뚝공법의 지지력 예측식 개선에 관한 연구)

  • 최도웅;한병권;서영화;조성한
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.382-389
    • /
    • 2002
  • Recently, auger-drilled piling has been widely used in urban area to reduce the air pollution and noise. But this construction method that its basic theory was introduced from Japan may be changed depending on the each piling company and construction field condition. Therefore, the design code and management method for auger-drilled piling is not defined yet. Especially, the lack of research on the bearing capacity of auger-drilled piling leads to the absence of rational bearing capacity prediction equation. This paper presents the optimum design code and economical construction method of the auger-drilled piling by proposing the new bearing capacity prediction equation based on the site specific soil types and construction conditions. In this paper, existing bearing capacity prediction equations and current pile load tests were compared. And the end bearing capacity and skin friction characteristics were also analyzed by comparing the results of CAPWAP. From the results of analysis, a reliable bearing capacity prediction equation considered soil types is proposed.

  • PDF

A Study on the Development of Stress Tolerant Structural Systems in the Frame of Built-up Greenhouses (내재해형 조립 비닐하우스 골조 구조시스템 개발 연구)

  • Han, Duckjeon;Shim, Jongseok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.2
    • /
    • pp.11-18
    • /
    • 2016
  • The collapsing accidents of greenhouse frames have been increased yearly due to strong wind and heavy snow, but as it was, there were few studies about the structural safety of greenhouses. Therefore, this study was carried out to develop the stress tolerant structural frame systems in built-up greenhouses. The vertical loading experiment of developed scale models were implemented and the developed types of models were simulated by 3-D analysis program in this study. These types of models, which are existing type and honeycomb type, in arch and standard style frames were classified. As a result of this study, it was verified that the honeycomb type model of arch style frame is better than the existing type model of it in stress resistance against snow load and wind load.