• Title/Summary/Keyword: Liver resident cells

Search Result 6, Processing Time 0.019 seconds

Tumor Immune Microenvironment as a New Therapeutic Target for Hepatocellular Carcinoma Development

  • Eunjeong Kim
    • Development and Reproduction
    • /
    • v.27 no.4
    • /
    • pp.167-174
    • /
    • 2023
  • Development of hepatocellular carcinoma (HCC) is driven by a multistep and long-term process. Because current therapeutic strategies are limited for HCC patients, there are increasing demands for understanding of immunotherapy, which has made technological and conceptual innovations in the treatment of cancer. Here, I discuss HCC immunotherapy in the view of interaction between liver resident cells and immune cells.

The Immune Landscape in Nonalcoholic Steatohepatitis

  • Sowmya Narayanan;Fionna A. Surette;Young S. Hahn
    • IMMUNE NETWORK
    • /
    • v.16 no.3
    • /
    • pp.147-158
    • /
    • 2016
  • The liver lies at the intersection of multiple metabolic pathways and consequently plays a central role in lipid metabolism. Pathological disturbances in hepatic lipid metabolism are characteristic of chronic metabolic diseases, such as obesity-mediated insulin resistance, which can result in nonalcoholic fatty liver disease (NAFLD). Tissue damage induced in NAFLD activates and recruits liver-resident and non-resident immune cells, resulting in nonalcoholic steatohepatitis (NASH). Importantly, NASH is associated with an increased risk of significant clinical sequelae such as cirrhosis, cardiovascular diseases, and malignancies. In this review, we describe the immunopathogenesis of NASH by defining the known functions of immune cells in the progression and resolution of disease.

Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain

  • Narayan Bashyal;Min Gyeong Kim;Jin-Hwa Jung;Rakshya Acharya;Young Jun Lee;Woo Sup Hwang;Jung-Mi Choi;Da-Young Chang;Sung-Soo Kim;Haeyoung Suh-Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2023
  • Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Cha, Ji-Young;Kim, Da-Hyun;Chun, Kyung-Hee
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.133-139
    • /
    • 2018
  • Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.

Role of Stem Cell Factor on the Recruitment of Mast Cells in the Development of Liver Fibrosis Induced by Bile Duct Ligation in the Rat (담관 결찰에 의한 간섬유증 발생에서 비만세포 동원에 미치는 Stem Cell Factor의 역할)

  • Jekal, Seung Joo;Ramm, Grant A.
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.163-172
    • /
    • 2004
  • Mast cells (MCs) have been implicated in the pathogenesis of tissue fibrosis. However, the role of MC in the development of liver fibrosis has not been fully elucidated. Stem cell factor (SCF) is known to recruit MCs to the liver following injury as it induces mast cell proliferation, survival and differentiation from resident tissue precursors. This study examines the interaction between activated hepatic stellate cells (HSCs) and MCs in rat fibrotic liver, and SCF production by HSCs during culture in vitro. Rats were studied 4, 7, 14 and 21 days after bile duct ligation (BDL). Fibrogenesis was assessed by a measurement of collagen stained with sirius red F3B. Activated HSCs and MCs were identified by ${\alpha}$-smooth muscle actin (${\alpha}-SMA$) immunohistochemical and alcian blue staining and measured by a computerized image analysis system. SCF production was determined in rat HSC cultures using Western blotting. Mild fibrotic changes were noted in BDL rat livers as early as 4 days after induction of cholestasis. Significant expansion and organization of fibrous tissue has occurred in day 14 BDL rats which progressed to bridging fibrosis by day 21. In BDL rats, both a large number of activated HSCs and MCs were detected in portal tracts and fibrous septa. Both area of activated HSCs infiltration and density of MCs were significantly higher in all BDL group compared with Shams. In BDL rats, both areas of activated HSCs infiltration and density of MCs were no significant difference between day 4 and 7 and were significantly higher in day 14. However, the areas of activated HSCs infiltration were significantly lesser in day 21 and the densities of MCs were significantly higher in day 21 compared with day14 BDL. In BDL rats, both areas of activated HSCs infiltration and density of MCs were highly correlated with areas of fibrosis. Western blotting showed that SCF protein was consistently produced in activated HSCs by culture on plastic and freshly isolated HSCs expressed relatively little 30kD SCF compared to late primary culture activated HSCs (day 14) and passaged HSCs. These results suggest that HSCs activated in vitro produce SCF, and may play an important role in recruiting mast cells to the liver during injury and fibrosis.

  • PDF

Identification of DC21 as a Novel Target Gene Counter-regulated by IL-12 and IL-4

  • Kong, Kyoung-Ah;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.623-628
    • /
    • 2002
  • The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display-polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counter-regulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.