DOI QR코드

DOI QR Code

The Immune Landscape in Nonalcoholic Steatohepatitis

  • Sowmya Narayanan (Beirne B. Carter Center for Immunology Research, University of Virginia) ;
  • Fionna A. Surette (Beirne B. Carter Center for Immunology Research, University of Virginia) ;
  • Young S. Hahn (Beirne B. Carter Center for Immunology Research, University of Virginia)
  • Received : 2016.03.02
  • Accepted : 2016.04.22
  • Published : 2016.06.30

Abstract

The liver lies at the intersection of multiple metabolic pathways and consequently plays a central role in lipid metabolism. Pathological disturbances in hepatic lipid metabolism are characteristic of chronic metabolic diseases, such as obesity-mediated insulin resistance, which can result in nonalcoholic fatty liver disease (NAFLD). Tissue damage induced in NAFLD activates and recruits liver-resident and non-resident immune cells, resulting in nonalcoholic steatohepatitis (NASH). Importantly, NASH is associated with an increased risk of significant clinical sequelae such as cirrhosis, cardiovascular diseases, and malignancies. In this review, we describe the immunopathogenesis of NASH by defining the known functions of immune cells in the progression and resolution of disease.

Keywords

Acknowledgement

This work was supported by grants from the U. S. National Institutes of Health F30DK104562 (S.N.), R01 AI098126 (Y.S.H.), and U19 AI066328 (Y.S.H.). We are grateful to members of the Hahn lab and Amy Newton for critical reading of the manuscript. We sincerely apologize to colleagues whose work we could not include due to space limitations.

References

  1. Charlton, M. R., J. M. Burns, R. A. Pedersen, K. D. Watt, J. K. Heimbach, and R. A. Dierkhising. 2011. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141: 1249-1253.  https://doi.org/10.1053/j.gastro.2011.06.061
  2. Lambert, J. E., M. A. Ramos-Roman, J. D. Browning, and E. J. Parks. 2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146: 726-735.  https://doi.org/10.1053/j.gastro.2013.11.049
  3. Romeo, S., J. Kozlitina, C. Xing, A. Pertsemlidis, D. Cox, L. A. Pennacchio, E. Boerwinkle, J. C. Cohen, and H. H. Hobbs. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40: 1461-1465.  https://doi.org/10.1038/ng.257
  4. Kozlitina, J., E. Smagris, S. Stender, B. G. Nordestgaard, H. H. Zhou, A. Tybjaerg-Hansen, T. F. Vogt, H. H. Hobbs, and J. C. Cohen. 2014. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46: 352-356.  https://doi.org/10.1038/ng.2901
  5. Adams, L. A., J. F. Lymp, J. St Sauver, S. O. Sanderson, K. D. Lindor, A. Feldstein, and P. Angulo. 2005. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129: 113-121.  https://doi.org/10.1053/j.gastro.2005.04.014
  6. Bhattacharjee, J., J. M. Kumar, S. Arindkar, B. Das, U. Pramod, R. C. Juyal, S. S. Majumdar, and P. Nagarajan. 2014. Role of immunodeficient animal models in the development of fructose induced NAFLD. J. Nutr. Biochem. 25: 219-226.  https://doi.org/10.1016/j.jnutbio.2013.10.010
  7. Tosello-Trampont, A. C., S. G. Landes, V. Nguyen, T. I. Novobrantseva, and Y. S. Hahn. 2012. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J. Biol. Chem. 287: 40161-40172.  https://doi.org/10.1074/jbc.M112.417014
  8. Lassen, M. G., J. R. Lukens, J. S. Dolina, M. G. Brown, and Y. S. Hahn. 2010. Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state. J. Immunol. 184: 2693-2701.  https://doi.org/10.4049/jimmunol.0901362
  9. Knolle, P. A., A. Uhrig, S. Hegenbarth, E. Loser, E. Schmitt, G. Gerken, and A. W. Lohse. 1998. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin. Exp. Immunol. 114: 427-433.  https://doi.org/10.1046/j.1365-2249.1998.00713.x
  10. Norris, S., C. Collins, D. G. Doherty, F. Smith, G. McEntee, O. Traynor, N. Nolan, J. Hegarty, and C. O'Farrelly. 1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol. 28: 84-90.  https://doi.org/10.1016/S0168-8278(98)80206-7
  11. Waggoner, S. N., R. T. Taniguchi, P. A. Mathew, V. Kumar, and R. M. Welsh. 2010. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J. Clin. Invest. 120: 1925-1938.  https://doi.org/10.1172/JCI41264
  12. Hegde, S., J. L. Lockridge, Y. A. Becker, S. Ma, S. C. Kenney, and J. E. Gumperz. 2011. Human NKT cells direct the differentiation of myeloid APCs that regulate T cell responses via expression of programmed cell death ligands. J. Autoimmun. 37: 28-38.  https://doi.org/10.1016/j.jaut.2011.03.001
  13. Limmer, A., J. Ohl, C. Kurts, H. G. Ljunggren, Y. Reiss, M. Groettrup, F. Momburg, B. Arnold, and P. A. Knolle. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6: 1348-1354.  https://doi.org/10.1038/82161
  14. Schildberg, F. A., A. Wojtalla, S. V. Siegmund, E. Endl, L. Diehl, Z. Abdullah, C. Kurts, and P. A. Knolle. 2011. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology 54: 262-272.  https://doi.org/10.1002/hep.24352
  15. Bertolino, P., M. C. Trescol-Biemont, and C. Rabourdin-Combe. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28: 221-236.  https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<221::AID-IMMU221>3.0.CO;2-F
  16. Ishibashi, H., M. Nakamura, A. Komori, K. Migita, and S. Shimoda. 2009. Liver architecture, cell function, and disease. Semin. Immunopathol. 31: 399-409.  https://doi.org/10.1007/s00281-009-0155-6
  17. Ogawa, Y., K. Imajo, M. Yoneda, T. Kessoku, W. Tomeno, Y. Shinohara, S. Kato, H. Mawatari, Y. Nozaki, K. Fujita, H. Kirikoshi, S. Maeda, S. Saito, K. Wada, and A. Nakajima. 2013. Soluble CD14 levels reflect liver inflammation in patients with nonalcoholic steatohepatitis. PLoS One 8: e65211. 
  18. Kazankov, K., H. J. Moller, A. Lange, N. H. Birkebaek, P. Holland-Fischer, J. Solvig, A. Horlyck, K. Kristensen, S. Rittig, A. Handberg, H. Vilstrup, and H. Gronbaek. 2015. The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatr. Obes. 10: 226-233.  https://doi.org/10.1111/ijpo.252
  19. Cinti, S., G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi, E. Faloia, S. Wang, M. Fortier, A. S. Greenberg, and M. S. Obin. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46: 2347-2355.  https://doi.org/10.1194/jlr.M500294-JLR200
  20. Haukeland, J. W., J. K. Damas, Z. Konopski, E. M. Loberg, T. Haaland, I. Goverud, P. A. Torjesen, K. Birkeland, K. Bjoro, and P. Aukrust. 2006. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 44: 1167-1174.  https://doi.org/10.1016/j.jhep.2006.02.011
  21. Egan, C. E., E. K. Daugherity, A. B. Rogers, D. S. Abi Abdallah, E. Y. Denkers, and K. J. Maurer. 2013. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS One 8: e65247. 
  22. Baeck, C., A. Wehr, K. R. Karlmark, F. Heymann, M. Vucur, N. Gassler, S. Huss, S. Klussmann, D. Eulberg, T. Luedde, C. Trautwein, and F. Tacke. 2012. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61: 416-426.  https://doi.org/10.1136/gutjnl-2011-300304
  23. Xiao, F., S. L. Waldrop, S. F. Bronk, G. J. Gores, L. S. Davis, and G. Kilic. 2015. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells. Purinergic Signal. 11: 347-359.  https://doi.org/10.1007/s11302-015-9456-5
  24. Idrissova, L., H. Malhi, N. W. Werneburg, N. K. LeBrasseur, S. F. Bronk, C. Fingas, T. Tchkonia, T. Pirtskhalava, T. A. White, M. B. Stout, P. Hirsova, A. Krishnan, C. Liedtke, C. Trautwein, N. Finnberg, W. S. El-Deiry, J. L. Kirkland, and G. J. Gores. 2015. TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J. Hepatol. 62: 1156-1163.  https://doi.org/10.1016/j.jhep.2014.11.033
  25. Kakazu, E., A. S. Mauer, M. Yin, and H. Malhi. 2016. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J. Lipid Res. 57: 233-245.  https://doi.org/10.1194/jlr.M063412
  26. Ibrahim, S. H., P. Hirsova, K. Tomita, S. F. Bronk, N. W. Werneburg, S. A. Harrison, V. S. Goodfellow, H. Malhi, and G. J. Gores. 2016. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63: 731-744.  https://doi.org/10.1002/hep.28252
  27. Nakagawa, H., A. Umemura, K. Taniguchi, J. Font-Burgada, D. Dhar, H. Ogata, Z. Zhong, M. A. Valasek, E. Seki, J. Hidalgo, K. Koike, R. J. Kaufman, and M. Karin. 2014. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26: 331-343.  https://doi.org/10.1016/j.ccr.2014.07.001
  28. Dixon, L. J., C. A. Flask, B. G. Papouchado, A. E. Feldstein, and L. E. Nagy. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8: e56100. 
  29. Csak, T., M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc, and G. Szabo. 2011. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54: 133-144.  https://doi.org/10.1002/hep.24341
  30. Hendrikx, T., V. Bieghs, S. M. Walenbergh, P. J. van Gorp, F. Verheyen, M. L. Jeurissen, M. M. Steinbusch, N. Vaes, C. J. Binder, G. H. Koek, R. Stienstra, M. G. Netea, M. H. Hofker, and R. Shiri-Sverdlov. 2013. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS One 8: e78792. 
  31. Ye, D., F. Y. Li, K. S. Lam, H. Li, W. Jia, Y. Wang, K. Man, C. M. Lo, X. Li, and A. Xu. 2012. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61: 1058-1067.  https://doi.org/10.1136/gutjnl-2011-300269
  32. Wigg, A. J., I. C. Roberts-Thomson, R. B. Dymock, P. J. McCarthy, R. H. Grose, and A. G. Cummins. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206-211.  https://doi.org/10.1136/gut.48.2.206
  33. Miele, L., V. Valenza, G. La Torre, M. Montalto, G. Cammarota, R. Ricci, R. Masciana, A. Forgione, M. L. Gabrieli, G. Perotti, F. M. Vecchio, G. Rapaccini, G. Gasbarrini, C. P. Day, and A. Grieco. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877-1887.  https://doi.org/10.1002/hep.22848
  34. Imajo, K., K. Fujita, M. Yoneda, Y. Nozaki, Y. Ogawa, Y. Shinohara, S. Kato, H. Mawatari, W. Shibata, H. Kitani, K. Ikejima, H. Kirikoshi, N. Nakajima, S. Saito, S. Maeyama, S. Watanabe, K. Wada, and A. Nakajima. 2012. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16: 44-54.  https://doi.org/10.1016/j.cmet.2012.05.012
  35. Zwolak, A., A. Szuster-Ciesielska, J. Daniluk, O. Slabczynska, and M. Kandefer-Szerszen. 2015. Hyperreactivity of blood leukocytes in patients with NAFLD to ex vivo lipopolysaccharide treatment is modulated by metformin and phosphatidylcholine but not by alpha ketoglutarate. PLoS One 10: e0143851. 
  36. Duffield, J. S., S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina, S. Vuthoori, S. Wu, R. Lang, and J. P. Iredale. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115: 56-65.  https://doi.org/10.1172/JCI200522675
  37. Fallowfield, J. A., M. Mizuno, T. J. Kendall, C. M. Constandinou, R. C. Benyon, J. S. Duffield, and J. P. Iredale. 2007. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178: 5288-5295.  https://doi.org/10.4049/jimmunol.178.8.5288
  38. Ramachandran, P., A. Pellicoro, M. A. Vernon, L. Boulter, R. L. Aucott, A. Ali, S. N. Hartland, V. K. Snowdon, A. Cappon, T. T. Gordon-Walker, M. J. Williams, D. R. Dunbar, J. R. Manning, N. van Rooijen, J. A. Fallowfield, S. J. Forbes, and J. P. Iredale. 2012. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. U. S. A. 109: E3186-3195.  https://doi.org/10.1073/pnas.1119964109
  39. Song, E., N. Ouyang, M. Horbelt, B. Antus, M. Wang, and M. S. Exton. 2000. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204: 19-28.  https://doi.org/10.1006/cimm.2000.1687
  40. Schnoor, M., P. Cullen, J. Lorkowski, K. Stolle, H. Robenek, D. Troyer, J. Rauterberg, and S. Lorkowski. 2008. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180: 5707-5719.  https://doi.org/10.4049/jimmunol.180.8.5707
  41. Wan, J., M. Benkdane, F. Teixeira-Clerc, S. Bonnafous, A. Louvet, F. Lafdil, F. Pecker, A. Tran, P. Gual, A. Mallat, S. Lotersztajn, and C. Pavoine. 2014. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59: 130-142.  https://doi.org/10.1002/hep.26607
  42. Asanuma, T., M. Ono, K. Kubota, A. Hirose, Y. Hayashi, T. Saibara, O. Inanami, Y. Ogawa, H. Enzan, S. Onishi, M. Kuwabara, and J. A. Oben. 2010. Super paramagnetic iron oxide MRI shows defective Kupffer cell uptake function in non-alcoholic fatty liver disease. Gut 59: 258-266.  https://doi.org/10.1136/gut.2009.176651
  43. Henning, J. R., C. S. Graffeo, A. Rehman, N. C. Fallon, C. P. Zambirinis, A. Ochi, R. Barilla, M. Jamal, M. Deutsch, S. Greco, M. Ego-Osuala, U. Bin-Saeed, R. S. Rao, S. Badar, J. P. Quesada, D. Acehan, and G. Miller. 2013. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58: 589-602.  https://doi.org/10.1002/hep.26267
  44. Jiao, J., D. Sastre, M. I. Fiel, U. E. Lee, Z. Ghiassi-Nejad, F. Ginhoux, E. Vivier, S. L. Friedman, M. Merad, and C. Aloman. 2012. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 55: 244-255.  https://doi.org/10.1002/hep.24621
  45. Connolly, M. K., A. S. Bedrosian, J. Mallen-St Clair, A. P. Mitchell, J. Ibrahim, A. Stroud, H. L. Pachter, D. Bar-Sagi, A. B. Frey, and G. Miller. 2009. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J. Clin. Invest. 119: 3213-3225.  https://doi.org/10.1172/JCI37581
  46. Miyake, T., S. M. Akbar, O. Yoshida, S. Chen, Y. Hiasa, B. Matsuura, M. Abe, and M. Onji. 2010. Impaired dendritic cell functions disrupt antigen-specific adaptive immune responses in mice with nonalcoholic fatty liver disease. J. Gastroenterol. 45: 859-867.  https://doi.org/10.1007/s00535-010-0218-4
  47. Rehman, A., K. C. Hemmert, A. Ochi, M. Jamal, J. R. Henning, R. Barilla, J. P. Quesada, C. P. Zambirinis, K. Tang, M. Ego-Osuala, R. S. Rao, S. Greco, M. Deutsch, S. Narayan, H. L. Pachter, C. S. Graffeo, D. Acehan, and G. Miller. 2013. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol. 190: 4640-4649.  https://doi.org/10.4049/jimmunol.1202312
  48. Ibrahim, J., A. H. Nguyen, A. Rehman, A. Ochi, M. Jamal, C. S. Graffeo, J. R. Henning, C. P. Zambirinis, N. C. Fallon, R. Barilla, S. Badar, A. Mitchell, R. S. Rao, D. Acehan, A. B. Frey, and G. Miller. 2012. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143: 1061-1072.  https://doi.org/10.1053/j.gastro.2012.06.003
  49. Everts, B., R. Tussiwand, L. Dreesen, K. C. Fairfax, S. C. Huang, A. M. Smith, C. M. O'Neill, W. Y. Lam, B. T. Edelson, J. F. Urban, Jr., K. M. Murphy, and E. J. Pearce. 2016. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 213: 35-51.  https://doi.org/10.1084/jem.20150235
  50. Gadd, V. L., R. Skoien, E. E. Powell, K. J. Fagan, C. Winterford, L. Horsfall, K. Irvine, and A. D. Clouston. 2014. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59: 1393-1405.  https://doi.org/10.1002/hep.26937
  51. Liang, W., J. H. Lindeman, A. L. Menke, D. P. Koonen, M. Morrison, L. M. Havekes, A. M. van den Hoek, and R. Kleemann. 2014. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1beta-induced chronic inflammation. Lab. Invest. 94: 491-502.  https://doi.org/10.1038/labinvest.2014.11
  52. Rensen, S. S., Y. Slaats, J. Nijhuis, A. Jans, V. Bieghs, A. Driessen, E. Malle, J. W. Greve, and W. A. Buurman. 2009. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol. 175: 1473-1482.  https://doi.org/10.2353/ajpath.2009.080999
  53. Ikura, Y., M. Ohsawa, T. Suekane, H. Fukushima, H. Itabe, H. Jomura, S. Nishiguchi, T. Inoue, T. Naruko, S. Ehara, N. Kawada, T. Arakawa, and M. Ueda. 2006. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 43: 506-514.  https://doi.org/10.1002/hep.21070
  54. Rensen, S. S., V. Bieghs, S. Xanthoulea, E. Arfianti, J. A. Bakker, R. Shiri-Sverdlov, M. H. Hofker, J. W. Greve, and W. A. Buurman. 2012. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One 7: e52411. 
  55. Strauss, R. S. 1999. Comparison of serum concentrations of alpha-tocopherol and beta-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J. Pediatr. 134: 160-165.  https://doi.org/10.1016/S0022-3476(99)70409-9
  56. Inzaugarat, M. E., N. E. Ferreyra Solari, L. A. Billordo, R. Abecasis, A. C. Gadano, and A. C. Chernavsky. 2011. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J. Clin. Immunol. 31: 1120-1130.  https://doi.org/10.1007/s10875-011-9571-1
  57. Novo, E., C. Busletta, L. V. Bonzo, D. Povero, C. Paternostro, K. Mareschi, I. Ferrero, E. David, C. Bertolani, A. Caligiuri, S. Cannito, E. Tamagno, A. Compagnone, S. Colombatto, F. Marra, F. Fagioli, M. Pinzani, and M. Parola. 2011. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. J. Hepatol. 54: 964-974.  https://doi.org/10.1016/j.jhep.2010.09.022
  58. Talukdar, S., Y. Oh da, G. Bandyopadhyay, D. Li, J. Xu, J. McNelis, M. Lu, P. Li, Q. Yan, Y. Zhu, J. Ofrecio, M. Lin, M. B. Brenner, and J. M. Olefsky. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18: 1407-1412.  https://doi.org/10.1038/nm.2885
  59. Sanyal, A. J., N. Chalasani, K. V. Kowdley, A. McCullough, A. M. Diehl, N. M. Bass, B. A. Neuschwander-Tetri, J. E. Lavine, J. Tonascia, A. Unalp, M. Van Natta, J. Clark, E. M. Brunt, D. E. Kleiner, J. H. Hoofnagle, and P. R. Robuck. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362: 1675-1685.  https://doi.org/10.1056/NEJMoa0907929
  60. Alkhouri, N., G. Morris-Stiff, C. Campbell, R. Lopez, T. A. Tamimi, L. Yerian, N. N. Zein, and A. E. Feldstein. 2012. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 32: 297-302.  https://doi.org/10.1111/j.1478-3231.2011.02639.x
  61. Kara, M., T. Dogru, H. Genc, E. Sertoglu, G. Celebi, H. Gurel, H. Kayadibi, A. F. Cicek, C. N. Ercin, and A. Sonmez. 2015. Neutrophil-to-lymphocyte ratio is not a predictor of liver histology in patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 27: 1144-1148.  https://doi.org/10.1097/MEG.0000000000000405
  62. Krizhanovsky, V., M. Yon, R. A. Dickins, S. Hearn, J. Simon, C. Miething, H. Yee, L. Zender, and S. W. Lowe. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657-667.  https://doi.org/10.1016/j.cell.2008.06.049
  63. Radaeva, S., L. Wang, S. Radaev, W. I. Jeong, O. Park, and B. Gao. 2007. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am. J. Physiol. Gastrointest. Liver Physiol. 293: G809-816.  https://doi.org/10.1152/ajpgi.00212.2007
  64. Muhanna, N., L. Abu Tair, S. Doron, J. Amer, M. Azzeh, M. Mahamid, S. Friedman, and R. Safadi. 2011. Amelioration of hepatic fibrosis by NK cell activation. Gut 60: 90-98.  https://doi.org/10.1136/gut.2010.211136
  65. Schnabl, B., C. A. Purbeck, Y. H. Choi, C. H. Hagedorn, and D. Brenner. 2003. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37: 653-664.  https://doi.org/10.1053/jhep.2003.50097
  66. Yoshimoto, S., T. M. Loo, K. Atarashi, H. Kanda, S. Sato, S. Oyadomari, Y. Iwakura, K. Oshima, H. Morita, M. Hattori, K. Honda, Y. Ishikawa, E. Hara, and N. Ohtani. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97-101.  https://doi.org/10.1038/nature12347
  67. Tosello-Trampont, A. C., P. Krueger, S. Narayanan, S. G. Landes, N. Leitinger, and Y. S. Hahn. 2016. NKp46+ natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 63: 799-812.  https://doi.org/10.1002/hep.28389
  68. Kramer, B., C. Korner, M. Kebschull, A. Glassner, M. Eisenhardt, H. D. Nischalke, M. Alexander, T. Sauerbruch, U. Spengler, and J. Nattermann. 2012. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 56: 1201-1213.  https://doi.org/10.1002/hep.25804
  69. Kahraman, A., M. Schlattjan, P. Kocabayoglu, S. Yildiz-Meziletoglu, M. Schlensak, C. D. Fingas, I. Wedemeyer, G. Marquitan, R. K. Gieseler, H. A. Baba, G. Gerken, and A. Canbay. 2010. Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology 51: 92-102.  https://doi.org/10.1002/hep.23253
  70. Jeong, W. I., O. Park, Y. G. Suh, J. S. Byun, S. Y. Park, E. Choi, J. K. Kim, H. Ko, H. Wang, A. M. Miller, and B. Gao. 2011. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology 53: 1342-1351.  https://doi.org/10.1002/hep.24190
  71. Bendelac, A., O. Lantz, M. E. Quimby, J. W. Yewdell, J. R. Bennink, and R. R. Brutkiewicz. 1995. CD1 recognition by mouse NK1+ T lymphocytes. Science 268: 863-865.  https://doi.org/10.1126/science.7538697
  72. Eberl, G., R. Lees, S. T. Smiley, M. Taniguchi, M. J. Grusby, and H. R. MacDonald. 1999. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162: 6410-6419.  https://doi.org/10.4049/jimmunol.162.11.6410
  73. Kita, H., O. V. Naidenko, M. Kronenberg, A. A. Ansari, P. Rogers, X. S. He, F. Koning, T. Mikayama, J. Van De Water, R. L. Coppel, M. Kaplan, and M. E. Gershwin. 2002. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123: 1031-1043.  https://doi.org/10.1053/gast.2002.36020
  74. Tang, X. Z., J. Jo, A. T. Tan, E. Sandalova, A. Chia, K. C. Tan, K. H. Lee, A. J. Gehring, G. De Libero, and A. Bertoletti. 2013. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190: 3142-3152.  https://doi.org/10.4049/jimmunol.1203218
  75. Syn, W. K., Y. H. Oo, T. A. Pereira, G. F. Karaca, Y. Jung, A. Omenetti, R. P. Witek, S. S. Choi, C. D. Guy, C. M. Fearing, V. Teaberry, F. E. Pereira, D. H. Adams, and A. M. Diehl. 2010. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51: 1998-2007.  https://doi.org/10.1002/hep.23599
  76. Tajiri, K., Y. Shimizu, K. Tsuneyama, and T. Sugiyama. 2009. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 21: 673-680.  https://doi.org/10.1097/MEG.0b013e32831bc3d6
  77. Xu, C. F., C. H. Yu, Y. M. Li, L. Xu, J. Du, and Z. Shen. 2007. Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease. World J. Gastroenterol. 13: 4504-4508.  https://doi.org/10.3748/wjg.v13.i33.4504
  78. Kremer, M., E. Thomas, R. J. Milton, A. W. Perry, N. van Rooijen, M. D. Wheeler, S. Zacks, M. Fried, R. A. Rippe, and I. N. Hines. 2010. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 51: 130-141.  https://doi.org/10.1002/hep.23292
  79. Li, Z., M. J. Soloski, and A. M. Diehl. 2005. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 42: 880-885.  https://doi.org/10.1002/hep.20826
  80. Wehr, A., C. Baeck, F. Heymann, P. M. Niemietz, L. Hammerich, C. Martin, H. W. Zimmermann, O. Pack, N. Gassler, K. Hittatiya, A. Ludwig, T. Luedde, C. Trautwein, and F. Tacke. 2013. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190: 5226-5236.  https://doi.org/10.4049/jimmunol.1202909
  81. Syn, W. K., K. M. Agboola, M. Swiderska, G. A. Michelotti, E. Liaskou, H. Pang, G. Xie, G. Philips, I. S. Chan, G. F. Karaca, A. Pereira Tde, Y. Chen, Z. Mi, P. C. Kuo, S. S. Choi, C. D. Guy, M. F. Abdelmalek, and A. M. Diehl. 2012. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61: 1323-1329.  https://doi.org/10.1136/gutjnl-2011-301857
  82. Solari, N. E. F., M. E. Inzaugarat, P. Baz, E. De Matteo, C. Lezama, M. Galoppo, C. Galoppo, and A. C. Chernavsky. 2012. The Role of Innate Cells Is Coupled to a Th1-Polarized Immune Response in Pediatric Nonalcoholic Steatohepatitis. J. Clin. Immunol. 32: 611-621.  https://doi.org/10.1007/s10875-011-9635-2
  83. Boujedidi, H., O. Robert, A. Bignon, A. M. Cassard-Doulcier, M. L. Renoud, H. Gary-Gouy, P. Hemon, H. Tharinger, S. Prevot, F. Bachelerie, S. Naveau, D. Emilie, K. Balabanian, and G. Perlemuter. 2015. CXCR4 dysfunction in nonalcoholic steatohepatitis in mice and patients. Clin. Sci. (Lond). 128: 257-267.  https://doi.org/10.1042/CS20130833
  84. Sutti, S., A. Jindal, I. Locatelli, M. Vacchiano, L. Gigliotti, C. Bozzola, and E. Albano. 2014. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59: 886-897.  https://doi.org/10.1002/hep.26749
  85. Tang, Y., Z. Bian, L. Zhao, Y. Liu, S. Liang, Q. Wang, X. Han, Y. Peng, X. Chen, L. Shen, D. Qiu, Z. Li, and X. Ma. 2011. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 166: 281-290.  https://doi.org/10.1111/j.1365-2249.2011.04471.x
  86. Tan, Z., X. Qian, R. Jiang, Q. Liu, Y. Wang, C. Chen, X. Wang, B. Ryffel, and B. Sun. 2013. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191: 1835-1844.  https://doi.org/10.4049/jimmunol.1203013
  87. Meng, F., K. Wang, T. Aoyama, S. I. Grivennikov, Y. Paik, D. Scholten, M. Cong, K. Iwaisako, X. Liu, M. Zhang, C. H. Osterreicher, F. Stickel, K. Ley, D. A. Brenner, and T. Kisseleva. 2012. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143: 765-776.  https://doi.org/10.1053/j.gastro.2012.05.049
  88. Wagner, N. M., G. Brandhorst, F. Czepluch, M. Lankeit, C. Eberle, S. Herzberg, V. Faustin, J. Riggert, M. Oellerich, G. Hasenfuss, S. Konstantinides, and K. Schafer. 2013. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring). 21: 461-468.  https://doi.org/10.1002/oby.20087
  89. Ma, X., J. Hua, A. R. Mohamood, A. R. Hamad, R. Ravi, and Z. Li. 2007. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology 46: 1519-1529.  https://doi.org/10.1002/hep.21823
  90. Feuerer, M., L. Herrero, D. Cipolletta, A. Naaz, J. Wong, A. Nayer, J. Lee, A. B. Goldfine, C. Benoist, S. Shoelson, and D. Mathis. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15: 930-939.  https://doi.org/10.1038/nm.2002
  91. Chatzigeorgiou, A., K. J. Chung, R. Garcia-Martin, V. I. Alexaki, A. Klotzsche-von Ameln, J. Phieler, D. Sprott, W. Kanczkowski, T. Tzanavari, M. Bdeir, S. Bergmann, M. Cartellieri, M. Bachmann, P. Nikolakopoulou, A. Androutsellis-Theotokis, G. Siegert, S. R. Bornstein, M. H. Muders, L. Boon, K. P. Karalis, E. Lutgens, and T. Chavakis. 2014. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 60: 1196-1210.  https://doi.org/10.1002/hep.27233
  92. Montes, V. N., M. S. Turner, S. Subramanian, Y. Ding, M. Hayden-Ledbetter, S. Slater, L. Goodspeed, S. Wang, M. Omer, L. J. Den Hartigh, M. M. Averill, K. D. O'Brien, J. Ledbetter, and A. Chait. 2013. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice. PLoS One 8: e67709. 
  93. Poggi, M., D. Engel, A. Christ, L. Beckers, E. Wijnands, L. Boon, A. Driessen, J. Cleutjens, C. Weber, N. Gerdes, and E. Lutgens. 2011. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler. Thromb. Vasc. Biol. 31: 2251-2260.  https://doi.org/10.1161/ATVBAHA.111.231357
  94. Guo, C. A., S. Kogan, S. U. Amano, M. Wang, S. Dagdeviren, R. H. Friedline, M. Aouadi, J. K. Kim, and M. P. Czech. 2013. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 304: E951-963.  https://doi.org/10.1152/ajpendo.00514.2012
  95. Leveille, C., M. Bouillon, W. Guo, J. Bolduc, E. Sharif-Askari, Y. El-Fakhry, C. Reyes-Moreno, R. Lapointe, Y. Merhi, J. A. Wilkins, and W. Mourad. 2007. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J. Biol. Chem. 282: 5143-5151.  https://doi.org/10.1074/jbc.M608342200
  96. Zirlik, A., C. Maier, N. Gerdes, L. MacFarlane, J. Soosairajah, U. Bavendiek, I. Ahrens, S. Ernst, N. Bassler, A. Missiou, Z. Patko, M. Aikawa, U. Schonbeck, C. Bode, P. Libby, and K. Peter. 2007. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 115: 1571-1580.  https://doi.org/10.1161/CIRCULATIONAHA.106.683201
  97. Ratziu, V. 2013. Pharmacological agents for NASH. Nat. Rev. Gastroenterol. Hepatol. 10: 676-685.  https://doi.org/10.1038/nrgastro.2013.193
  98. Wang, X., N. Ota, P. Manzanillo, L. Kates, J. Zavala-Solorio, C. Eidenschenk, J. Zhang, J. Lesch, W. P. Lee, J. Ross, L. Diehl, N. van Bruggen, G. Kolumam, and W. Ouyang. 2014. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514: 237-241.  https://doi.org/10.1038/nature13564
  99. Lee, M. W., J. I. Odegaard, L. Mukundan, Y. Qiu, A. B. Molofsky, J. C. Nussbaum, K. Yun, R. M. Locksley, and A. Chawla. 2015. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160: 74-87.  https://doi.org/10.1016/j.cell.2014.12.011
  100. Brestoff, J. R., B. S. Kim, S. A. Saenz, R. R. Stine, L. A. Monticelli, G. F. Sonnenberg, J. J. Thome, D. L. Farber, K. Lutfy, P. Seale, and D. Artis. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519: 242-246. https://doi.org/10.1038/nature14115