Acknowledgement
This work was supported by grants from the U. S. National Institutes of Health F30DK104562 (S.N.), R01 AI098126 (Y.S.H.), and U19 AI066328 (Y.S.H.). We are grateful to members of the Hahn lab and Amy Newton for critical reading of the manuscript. We sincerely apologize to colleagues whose work we could not include due to space limitations.
References
- Charlton, M. R., J. M. Burns, R. A. Pedersen, K. D. Watt, J. K. Heimbach, and R. A. Dierkhising. 2011. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 141: 1249-1253. https://doi.org/10.1053/j.gastro.2011.06.061
- Lambert, J. E., M. A. Ramos-Roman, J. D. Browning, and E. J. Parks. 2014. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146: 726-735. https://doi.org/10.1053/j.gastro.2013.11.049
- Romeo, S., J. Kozlitina, C. Xing, A. Pertsemlidis, D. Cox, L. A. Pennacchio, E. Boerwinkle, J. C. Cohen, and H. H. Hobbs. 2008. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40: 1461-1465. https://doi.org/10.1038/ng.257
- Kozlitina, J., E. Smagris, S. Stender, B. G. Nordestgaard, H. H. Zhou, A. Tybjaerg-Hansen, T. F. Vogt, H. H. Hobbs, and J. C. Cohen. 2014. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46: 352-356. https://doi.org/10.1038/ng.2901
- Adams, L. A., J. F. Lymp, J. St Sauver, S. O. Sanderson, K. D. Lindor, A. Feldstein, and P. Angulo. 2005. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129: 113-121. https://doi.org/10.1053/j.gastro.2005.04.014
- Bhattacharjee, J., J. M. Kumar, S. Arindkar, B. Das, U. Pramod, R. C. Juyal, S. S. Majumdar, and P. Nagarajan. 2014. Role of immunodeficient animal models in the development of fructose induced NAFLD. J. Nutr. Biochem. 25: 219-226. https://doi.org/10.1016/j.jnutbio.2013.10.010
- Tosello-Trampont, A. C., S. G. Landes, V. Nguyen, T. I. Novobrantseva, and Y. S. Hahn. 2012. Kuppfer cells trigger nonalcoholic steatohepatitis development in diet-induced mouse model through tumor necrosis factor-alpha production. J. Biol. Chem. 287: 40161-40172. https://doi.org/10.1074/jbc.M112.417014
- Lassen, M. G., J. R. Lukens, J. S. Dolina, M. G. Brown, and Y. S. Hahn. 2010. Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state. J. Immunol. 184: 2693-2701. https://doi.org/10.4049/jimmunol.0901362
- Knolle, P. A., A. Uhrig, S. Hegenbarth, E. Loser, E. Schmitt, G. Gerken, and A. W. Lohse. 1998. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin. Exp. Immunol. 114: 427-433. https://doi.org/10.1046/j.1365-2249.1998.00713.x
- Norris, S., C. Collins, D. G. Doherty, F. Smith, G. McEntee, O. Traynor, N. Nolan, J. Hegarty, and C. O'Farrelly. 1998. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J. Hepatol. 28: 84-90. https://doi.org/10.1016/S0168-8278(98)80206-7
- Waggoner, S. N., R. T. Taniguchi, P. A. Mathew, V. Kumar, and R. M. Welsh. 2010. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J. Clin. Invest. 120: 1925-1938. https://doi.org/10.1172/JCI41264
- Hegde, S., J. L. Lockridge, Y. A. Becker, S. Ma, S. C. Kenney, and J. E. Gumperz. 2011. Human NKT cells direct the differentiation of myeloid APCs that regulate T cell responses via expression of programmed cell death ligands. J. Autoimmun. 37: 28-38. https://doi.org/10.1016/j.jaut.2011.03.001
- Limmer, A., J. Ohl, C. Kurts, H. G. Ljunggren, Y. Reiss, M. Groettrup, F. Momburg, B. Arnold, and P. A. Knolle. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6: 1348-1354. https://doi.org/10.1038/82161
- Schildberg, F. A., A. Wojtalla, S. V. Siegmund, E. Endl, L. Diehl, Z. Abdullah, C. Kurts, and P. A. Knolle. 2011. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology 54: 262-272. https://doi.org/10.1002/hep.24352
- Bertolino, P., M. C. Trescol-Biemont, and C. Rabourdin-Combe. 1998. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur. J. Immunol. 28: 221-236. https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<221::AID-IMMU221>3.0.CO;2-F
- Ishibashi, H., M. Nakamura, A. Komori, K. Migita, and S. Shimoda. 2009. Liver architecture, cell function, and disease. Semin. Immunopathol. 31: 399-409. https://doi.org/10.1007/s00281-009-0155-6
- Ogawa, Y., K. Imajo, M. Yoneda, T. Kessoku, W. Tomeno, Y. Shinohara, S. Kato, H. Mawatari, Y. Nozaki, K. Fujita, H. Kirikoshi, S. Maeda, S. Saito, K. Wada, and A. Nakajima. 2013. Soluble CD14 levels reflect liver inflammation in patients with nonalcoholic steatohepatitis. PLoS One 8: e65211.
- Kazankov, K., H. J. Moller, A. Lange, N. H. Birkebaek, P. Holland-Fischer, J. Solvig, A. Horlyck, K. Kristensen, S. Rittig, A. Handberg, H. Vilstrup, and H. Gronbaek. 2015. The macrophage activation marker sCD163 is associated with changes in NAFLD and metabolic profile during lifestyle intervention in obese children. Pediatr. Obes. 10: 226-233. https://doi.org/10.1111/ijpo.252
- Cinti, S., G. Mitchell, G. Barbatelli, I. Murano, E. Ceresi, E. Faloia, S. Wang, M. Fortier, A. S. Greenberg, and M. S. Obin. 2005. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 46: 2347-2355. https://doi.org/10.1194/jlr.M500294-JLR200
- Haukeland, J. W., J. K. Damas, Z. Konopski, E. M. Loberg, T. Haaland, I. Goverud, P. A. Torjesen, K. Birkeland, K. Bjoro, and P. Aukrust. 2006. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J. Hepatol. 44: 1167-1174. https://doi.org/10.1016/j.jhep.2006.02.011
- Egan, C. E., E. K. Daugherity, A. B. Rogers, D. S. Abi Abdallah, E. Y. Denkers, and K. J. Maurer. 2013. CCR2 and CD44 promote inflammatory cell recruitment during fatty liver formation in a lithogenic diet fed mouse model. PLoS One 8: e65247.
- Baeck, C., A. Wehr, K. R. Karlmark, F. Heymann, M. Vucur, N. Gassler, S. Huss, S. Klussmann, D. Eulberg, T. Luedde, C. Trautwein, and F. Tacke. 2012. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61: 416-426. https://doi.org/10.1136/gutjnl-2011-300304
- Xiao, F., S. L. Waldrop, S. F. Bronk, G. J. Gores, L. S. Davis, and G. Kilic. 2015. Lipoapoptosis induced by saturated free fatty acids stimulates monocyte migration: a novel role for Pannexin1 in liver cells. Purinergic Signal. 11: 347-359. https://doi.org/10.1007/s11302-015-9456-5
- Idrissova, L., H. Malhi, N. W. Werneburg, N. K. LeBrasseur, S. F. Bronk, C. Fingas, T. Tchkonia, T. Pirtskhalava, T. A. White, M. B. Stout, P. Hirsova, A. Krishnan, C. Liedtke, C. Trautwein, N. Finnberg, W. S. El-Deiry, J. L. Kirkland, and G. J. Gores. 2015. TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J. Hepatol. 62: 1156-1163. https://doi.org/10.1016/j.jhep.2014.11.033
- Kakazu, E., A. S. Mauer, M. Yin, and H. Malhi. 2016. Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J. Lipid Res. 57: 233-245. https://doi.org/10.1194/jlr.M063412
- Ibrahim, S. H., P. Hirsova, K. Tomita, S. F. Bronk, N. W. Werneburg, S. A. Harrison, V. S. Goodfellow, H. Malhi, and G. J. Gores. 2016. Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63: 731-744. https://doi.org/10.1002/hep.28252
- Nakagawa, H., A. Umemura, K. Taniguchi, J. Font-Burgada, D. Dhar, H. Ogata, Z. Zhong, M. A. Valasek, E. Seki, J. Hidalgo, K. Koike, R. J. Kaufman, and M. Karin. 2014. ER stress cooperates with hypernutrition to trigger TNF-dependent spontaneous HCC development. Cancer Cell 26: 331-343. https://doi.org/10.1016/j.ccr.2014.07.001
- Dixon, L. J., C. A. Flask, B. G. Papouchado, A. E. Feldstein, and L. E. Nagy. 2013. Caspase-1 as a central regulator of high fat diet-induced non-alcoholic steatohepatitis. PLoS One 8: e56100.
- Csak, T., M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc, and G. Szabo. 2011. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54: 133-144. https://doi.org/10.1002/hep.24341
- Hendrikx, T., V. Bieghs, S. M. Walenbergh, P. J. van Gorp, F. Verheyen, M. L. Jeurissen, M. M. Steinbusch, N. Vaes, C. J. Binder, G. H. Koek, R. Stienstra, M. G. Netea, M. H. Hofker, and R. Shiri-Sverdlov. 2013. Macrophage specific caspase-1/11 deficiency protects against cholesterol crystallization and hepatic inflammation in hyperlipidemic mice. PLoS One 8: e78792.
- Ye, D., F. Y. Li, K. S. Lam, H. Li, W. Jia, Y. Wang, K. Man, C. M. Lo, X. Li, and A. Xu. 2012. Toll-like receptor-4 mediates obesity-induced non-alcoholic steatohepatitis through activation of X-box binding protein-1 in mice. Gut 61: 1058-1067. https://doi.org/10.1136/gutjnl-2011-300269
- Wigg, A. J., I. C. Roberts-Thomson, R. B. Dymock, P. J. McCarthy, R. H. Grose, and A. G. Cummins. 2001. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 48: 206-211. https://doi.org/10.1136/gut.48.2.206
- Miele, L., V. Valenza, G. La Torre, M. Montalto, G. Cammarota, R. Ricci, R. Masciana, A. Forgione, M. L. Gabrieli, G. Perotti, F. M. Vecchio, G. Rapaccini, G. Gasbarrini, C. P. Day, and A. Grieco. 2009. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49: 1877-1887. https://doi.org/10.1002/hep.22848
- Imajo, K., K. Fujita, M. Yoneda, Y. Nozaki, Y. Ogawa, Y. Shinohara, S. Kato, H. Mawatari, W. Shibata, H. Kitani, K. Ikejima, H. Kirikoshi, N. Nakajima, S. Saito, S. Maeyama, S. Watanabe, K. Wada, and A. Nakajima. 2012. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab. 16: 44-54. https://doi.org/10.1016/j.cmet.2012.05.012
- Zwolak, A., A. Szuster-Ciesielska, J. Daniluk, O. Slabczynska, and M. Kandefer-Szerszen. 2015. Hyperreactivity of blood leukocytes in patients with NAFLD to ex vivo lipopolysaccharide treatment is modulated by metformin and phosphatidylcholine but not by alpha ketoglutarate. PLoS One 10: e0143851.
- Duffield, J. S., S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina, S. Vuthoori, S. Wu, R. Lang, and J. P. Iredale. 2005. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115: 56-65. https://doi.org/10.1172/JCI200522675
- Fallowfield, J. A., M. Mizuno, T. J. Kendall, C. M. Constandinou, R. C. Benyon, J. S. Duffield, and J. P. Iredale. 2007. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol. 178: 5288-5295. https://doi.org/10.4049/jimmunol.178.8.5288
- Ramachandran, P., A. Pellicoro, M. A. Vernon, L. Boulter, R. L. Aucott, A. Ali, S. N. Hartland, V. K. Snowdon, A. Cappon, T. T. Gordon-Walker, M. J. Williams, D. R. Dunbar, J. R. Manning, N. van Rooijen, J. A. Fallowfield, S. J. Forbes, and J. P. Iredale. 2012. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl. Acad. Sci. U. S. A. 109: E3186-3195. https://doi.org/10.1073/pnas.1119964109
- Song, E., N. Ouyang, M. Horbelt, B. Antus, M. Wang, and M. S. Exton. 2000. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204: 19-28. https://doi.org/10.1006/cimm.2000.1687
- Schnoor, M., P. Cullen, J. Lorkowski, K. Stolle, H. Robenek, D. Troyer, J. Rauterberg, and S. Lorkowski. 2008. Production of type VI collagen by human macrophages: a new dimension in macrophage functional heterogeneity. J. Immunol. 180: 5707-5719. https://doi.org/10.4049/jimmunol.180.8.5707
- Wan, J., M. Benkdane, F. Teixeira-Clerc, S. Bonnafous, A. Louvet, F. Lafdil, F. Pecker, A. Tran, P. Gual, A. Mallat, S. Lotersztajn, and C. Pavoine. 2014. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59: 130-142. https://doi.org/10.1002/hep.26607
- Asanuma, T., M. Ono, K. Kubota, A. Hirose, Y. Hayashi, T. Saibara, O. Inanami, Y. Ogawa, H. Enzan, S. Onishi, M. Kuwabara, and J. A. Oben. 2010. Super paramagnetic iron oxide MRI shows defective Kupffer cell uptake function in non-alcoholic fatty liver disease. Gut 59: 258-266. https://doi.org/10.1136/gut.2009.176651
- Henning, J. R., C. S. Graffeo, A. Rehman, N. C. Fallon, C. P. Zambirinis, A. Ochi, R. Barilla, M. Jamal, M. Deutsch, S. Greco, M. Ego-Osuala, U. Bin-Saeed, R. S. Rao, S. Badar, J. P. Quesada, D. Acehan, and G. Miller. 2013. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58: 589-602. https://doi.org/10.1002/hep.26267
- Jiao, J., D. Sastre, M. I. Fiel, U. E. Lee, Z. Ghiassi-Nejad, F. Ginhoux, E. Vivier, S. L. Friedman, M. Merad, and C. Aloman. 2012. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 55: 244-255. https://doi.org/10.1002/hep.24621
- Connolly, M. K., A. S. Bedrosian, J. Mallen-St Clair, A. P. Mitchell, J. Ibrahim, A. Stroud, H. L. Pachter, D. Bar-Sagi, A. B. Frey, and G. Miller. 2009. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J. Clin. Invest. 119: 3213-3225. https://doi.org/10.1172/JCI37581
- Miyake, T., S. M. Akbar, O. Yoshida, S. Chen, Y. Hiasa, B. Matsuura, M. Abe, and M. Onji. 2010. Impaired dendritic cell functions disrupt antigen-specific adaptive immune responses in mice with nonalcoholic fatty liver disease. J. Gastroenterol. 45: 859-867. https://doi.org/10.1007/s00535-010-0218-4
- Rehman, A., K. C. Hemmert, A. Ochi, M. Jamal, J. R. Henning, R. Barilla, J. P. Quesada, C. P. Zambirinis, K. Tang, M. Ego-Osuala, R. S. Rao, S. Greco, M. Deutsch, S. Narayan, H. L. Pachter, C. S. Graffeo, D. Acehan, and G. Miller. 2013. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol. 190: 4640-4649. https://doi.org/10.4049/jimmunol.1202312
- Ibrahim, J., A. H. Nguyen, A. Rehman, A. Ochi, M. Jamal, C. S. Graffeo, J. R. Henning, C. P. Zambirinis, N. C. Fallon, R. Barilla, S. Badar, A. Mitchell, R. S. Rao, D. Acehan, A. B. Frey, and G. Miller. 2012. Dendritic cell populations with different concentrations of lipid regulate tolerance and immunity in mouse and human liver. Gastroenterology 143: 1061-1072. https://doi.org/10.1053/j.gastro.2012.06.003
- Everts, B., R. Tussiwand, L. Dreesen, K. C. Fairfax, S. C. Huang, A. M. Smith, C. M. O'Neill, W. Y. Lam, B. T. Edelson, J. F. Urban, Jr., K. M. Murphy, and E. J. Pearce. 2016. Migratory CD103+ dendritic cells suppress helminth-driven type 2 immunity through constitutive expression of IL-12. J. Exp. Med. 213: 35-51. https://doi.org/10.1084/jem.20150235
- Gadd, V. L., R. Skoien, E. E. Powell, K. J. Fagan, C. Winterford, L. Horsfall, K. Irvine, and A. D. Clouston. 2014. The portal inflammatory infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 59: 1393-1405. https://doi.org/10.1002/hep.26937
- Liang, W., J. H. Lindeman, A. L. Menke, D. P. Koonen, M. Morrison, L. M. Havekes, A. M. van den Hoek, and R. Kleemann. 2014. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1beta-induced chronic inflammation. Lab. Invest. 94: 491-502. https://doi.org/10.1038/labinvest.2014.11
- Rensen, S. S., Y. Slaats, J. Nijhuis, A. Jans, V. Bieghs, A. Driessen, E. Malle, J. W. Greve, and W. A. Buurman. 2009. Increased hepatic myeloperoxidase activity in obese subjects with nonalcoholic steatohepatitis. Am. J. Pathol. 175: 1473-1482. https://doi.org/10.2353/ajpath.2009.080999
- Ikura, Y., M. Ohsawa, T. Suekane, H. Fukushima, H. Itabe, H. Jomura, S. Nishiguchi, T. Inoue, T. Naruko, S. Ehara, N. Kawada, T. Arakawa, and M. Ueda. 2006. Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 43: 506-514. https://doi.org/10.1002/hep.21070
- Rensen, S. S., V. Bieghs, S. Xanthoulea, E. Arfianti, J. A. Bakker, R. Shiri-Sverdlov, M. H. Hofker, J. W. Greve, and W. A. Buurman. 2012. Neutrophil-derived myeloperoxidase aggravates non-alcoholic steatohepatitis in low-density lipoprotein receptor-deficient mice. PLoS One 7: e52411.
- Strauss, R. S. 1999. Comparison of serum concentrations of alpha-tocopherol and beta-carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J. Pediatr. 134: 160-165. https://doi.org/10.1016/S0022-3476(99)70409-9
- Inzaugarat, M. E., N. E. Ferreyra Solari, L. A. Billordo, R. Abecasis, A. C. Gadano, and A. C. Chernavsky. 2011. Altered phenotype and functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J. Clin. Immunol. 31: 1120-1130. https://doi.org/10.1007/s10875-011-9571-1
- Novo, E., C. Busletta, L. V. Bonzo, D. Povero, C. Paternostro, K. Mareschi, I. Ferrero, E. David, C. Bertolani, A. Caligiuri, S. Cannito, E. Tamagno, A. Compagnone, S. Colombatto, F. Marra, F. Fagioli, M. Pinzani, and M. Parola. 2011. Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells. J. Hepatol. 54: 964-974. https://doi.org/10.1016/j.jhep.2010.09.022
- Talukdar, S., Y. Oh da, G. Bandyopadhyay, D. Li, J. Xu, J. McNelis, M. Lu, P. Li, Q. Yan, Y. Zhu, J. Ofrecio, M. Lin, M. B. Brenner, and J. M. Olefsky. 2012. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat. Med. 18: 1407-1412. https://doi.org/10.1038/nm.2885
- Sanyal, A. J., N. Chalasani, K. V. Kowdley, A. McCullough, A. M. Diehl, N. M. Bass, B. A. Neuschwander-Tetri, J. E. Lavine, J. Tonascia, A. Unalp, M. Van Natta, J. Clark, E. M. Brunt, D. E. Kleiner, J. H. Hoofnagle, and P. R. Robuck. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362: 1675-1685. https://doi.org/10.1056/NEJMoa0907929
- Alkhouri, N., G. Morris-Stiff, C. Campbell, R. Lopez, T. A. Tamimi, L. Yerian, N. N. Zein, and A. E. Feldstein. 2012. Neutrophil to lymphocyte ratio: a new marker for predicting steatohepatitis and fibrosis in patients with nonalcoholic fatty liver disease. Liver Int. 32: 297-302. https://doi.org/10.1111/j.1478-3231.2011.02639.x
- Kara, M., T. Dogru, H. Genc, E. Sertoglu, G. Celebi, H. Gurel, H. Kayadibi, A. F. Cicek, C. N. Ercin, and A. Sonmez. 2015. Neutrophil-to-lymphocyte ratio is not a predictor of liver histology in patients with nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 27: 1144-1148. https://doi.org/10.1097/MEG.0000000000000405
- Krizhanovsky, V., M. Yon, R. A. Dickins, S. Hearn, J. Simon, C. Miething, H. Yee, L. Zender, and S. W. Lowe. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657-667. https://doi.org/10.1016/j.cell.2008.06.049
- Radaeva, S., L. Wang, S. Radaev, W. I. Jeong, O. Park, and B. Gao. 2007. Retinoic acid signaling sensitizes hepatic stellate cells to NK cell killing via upregulation of NK cell activating ligand RAE1. Am. J. Physiol. Gastrointest. Liver Physiol. 293: G809-816. https://doi.org/10.1152/ajpgi.00212.2007
- Muhanna, N., L. Abu Tair, S. Doron, J. Amer, M. Azzeh, M. Mahamid, S. Friedman, and R. Safadi. 2011. Amelioration of hepatic fibrosis by NK cell activation. Gut 60: 90-98. https://doi.org/10.1136/gut.2010.211136
- Schnabl, B., C. A. Purbeck, Y. H. Choi, C. H. Hagedorn, and D. Brenner. 2003. Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37: 653-664. https://doi.org/10.1053/jhep.2003.50097
- Yoshimoto, S., T. M. Loo, K. Atarashi, H. Kanda, S. Sato, S. Oyadomari, Y. Iwakura, K. Oshima, H. Morita, M. Hattori, K. Honda, Y. Ishikawa, E. Hara, and N. Ohtani. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499: 97-101. https://doi.org/10.1038/nature12347
- Tosello-Trampont, A. C., P. Krueger, S. Narayanan, S. G. Landes, N. Leitinger, and Y. S. Hahn. 2016. NKp46+ natural killer cells attenuate metabolism-induced hepatic fibrosis by regulating macrophage activation in mice. Hepatology 63: 799-812. https://doi.org/10.1002/hep.28389
- Kramer, B., C. Korner, M. Kebschull, A. Glassner, M. Eisenhardt, H. D. Nischalke, M. Alexander, T. Sauerbruch, U. Spengler, and J. Nattermann. 2012. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 56: 1201-1213. https://doi.org/10.1002/hep.25804
- Kahraman, A., M. Schlattjan, P. Kocabayoglu, S. Yildiz-Meziletoglu, M. Schlensak, C. D. Fingas, I. Wedemeyer, G. Marquitan, R. K. Gieseler, H. A. Baba, G. Gerken, and A. Canbay. 2010. Major histocompatibility complex class I-related chains A and B (MIC A/B): a novel role in nonalcoholic steatohepatitis. Hepatology 51: 92-102. https://doi.org/10.1002/hep.23253
- Jeong, W. I., O. Park, Y. G. Suh, J. S. Byun, S. Y. Park, E. Choi, J. K. Kim, H. Ko, H. Wang, A. M. Miller, and B. Gao. 2011. Suppression of innate immunity (natural killer cell/interferon-gamma) in the advanced stages of liver fibrosis in mice. Hepatology 53: 1342-1351. https://doi.org/10.1002/hep.24190
- Bendelac, A., O. Lantz, M. E. Quimby, J. W. Yewdell, J. R. Bennink, and R. R. Brutkiewicz. 1995. CD1 recognition by mouse NK1+ T lymphocytes. Science 268: 863-865. https://doi.org/10.1126/science.7538697
- Eberl, G., R. Lees, S. T. Smiley, M. Taniguchi, M. J. Grusby, and H. R. MacDonald. 1999. Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells. J. Immunol. 162: 6410-6419. https://doi.org/10.4049/jimmunol.162.11.6410
- Kita, H., O. V. Naidenko, M. Kronenberg, A. A. Ansari, P. Rogers, X. S. He, F. Koning, T. Mikayama, J. Van De Water, R. L. Coppel, M. Kaplan, and M. E. Gershwin. 2002. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123: 1031-1043. https://doi.org/10.1053/gast.2002.36020
- Tang, X. Z., J. Jo, A. T. Tan, E. Sandalova, A. Chia, K. C. Tan, K. H. Lee, A. J. Gehring, G. De Libero, and A. Bertoletti. 2013. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190: 3142-3152. https://doi.org/10.4049/jimmunol.1203218
- Syn, W. K., Y. H. Oo, T. A. Pereira, G. F. Karaca, Y. Jung, A. Omenetti, R. P. Witek, S. S. Choi, C. D. Guy, C. M. Fearing, V. Teaberry, F. E. Pereira, D. H. Adams, and A. M. Diehl. 2010. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51: 1998-2007. https://doi.org/10.1002/hep.23599
- Tajiri, K., Y. Shimizu, K. Tsuneyama, and T. Sugiyama. 2009. Role of liver-infiltrating CD3+CD56+ natural killer T cells in the pathogenesis of nonalcoholic fatty liver disease. Eur. J. Gastroenterol. Hepatol. 21: 673-680. https://doi.org/10.1097/MEG.0b013e32831bc3d6
- Xu, C. F., C. H. Yu, Y. M. Li, L. Xu, J. Du, and Z. Shen. 2007. Association of the frequency of peripheral natural killer T cells with nonalcoholic fatty liver disease. World J. Gastroenterol. 13: 4504-4508. https://doi.org/10.3748/wjg.v13.i33.4504
- Kremer, M., E. Thomas, R. J. Milton, A. W. Perry, N. van Rooijen, M. D. Wheeler, S. Zacks, M. Fried, R. A. Rippe, and I. N. Hines. 2010. Kupffer cell and interleukin-12-dependent loss of natural killer T cells in hepatosteatosis. Hepatology 51: 130-141. https://doi.org/10.1002/hep.23292
- Li, Z., M. J. Soloski, and A. M. Diehl. 2005. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 42: 880-885. https://doi.org/10.1002/hep.20826
- Wehr, A., C. Baeck, F. Heymann, P. M. Niemietz, L. Hammerich, C. Martin, H. W. Zimmermann, O. Pack, N. Gassler, K. Hittatiya, A. Ludwig, T. Luedde, C. Trautwein, and F. Tacke. 2013. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190: 5226-5236. https://doi.org/10.4049/jimmunol.1202909
- Syn, W. K., K. M. Agboola, M. Swiderska, G. A. Michelotti, E. Liaskou, H. Pang, G. Xie, G. Philips, I. S. Chan, G. F. Karaca, A. Pereira Tde, Y. Chen, Z. Mi, P. C. Kuo, S. S. Choi, C. D. Guy, M. F. Abdelmalek, and A. M. Diehl. 2012. NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61: 1323-1329. https://doi.org/10.1136/gutjnl-2011-301857
- Solari, N. E. F., M. E. Inzaugarat, P. Baz, E. De Matteo, C. Lezama, M. Galoppo, C. Galoppo, and A. C. Chernavsky. 2012. The Role of Innate Cells Is Coupled to a Th1-Polarized Immune Response in Pediatric Nonalcoholic Steatohepatitis. J. Clin. Immunol. 32: 611-621. https://doi.org/10.1007/s10875-011-9635-2
- Boujedidi, H., O. Robert, A. Bignon, A. M. Cassard-Doulcier, M. L. Renoud, H. Gary-Gouy, P. Hemon, H. Tharinger, S. Prevot, F. Bachelerie, S. Naveau, D. Emilie, K. Balabanian, and G. Perlemuter. 2015. CXCR4 dysfunction in nonalcoholic steatohepatitis in mice and patients. Clin. Sci. (Lond). 128: 257-267. https://doi.org/10.1042/CS20130833
- Sutti, S., A. Jindal, I. Locatelli, M. Vacchiano, L. Gigliotti, C. Bozzola, and E. Albano. 2014. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59: 886-897. https://doi.org/10.1002/hep.26749
- Tang, Y., Z. Bian, L. Zhao, Y. Liu, S. Liang, Q. Wang, X. Han, Y. Peng, X. Chen, L. Shen, D. Qiu, Z. Li, and X. Ma. 2011. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 166: 281-290. https://doi.org/10.1111/j.1365-2249.2011.04471.x
- Tan, Z., X. Qian, R. Jiang, Q. Liu, Y. Wang, C. Chen, X. Wang, B. Ryffel, and B. Sun. 2013. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191: 1835-1844. https://doi.org/10.4049/jimmunol.1203013
- Meng, F., K. Wang, T. Aoyama, S. I. Grivennikov, Y. Paik, D. Scholten, M. Cong, K. Iwaisako, X. Liu, M. Zhang, C. H. Osterreicher, F. Stickel, K. Ley, D. A. Brenner, and T. Kisseleva. 2012. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143: 765-776. https://doi.org/10.1053/j.gastro.2012.05.049
- Wagner, N. M., G. Brandhorst, F. Czepluch, M. Lankeit, C. Eberle, S. Herzberg, V. Faustin, J. Riggert, M. Oellerich, G. Hasenfuss, S. Konstantinides, and K. Schafer. 2013. Circulating regulatory T cells are reduced in obesity and may identify subjects at increased metabolic and cardiovascular risk. Obesity (Silver Spring). 21: 461-468. https://doi.org/10.1002/oby.20087
- Ma, X., J. Hua, A. R. Mohamood, A. R. Hamad, R. Ravi, and Z. Li. 2007. A high-fat diet and regulatory T cells influence susceptibility to endotoxin-induced liver injury. Hepatology 46: 1519-1529. https://doi.org/10.1002/hep.21823
- Feuerer, M., L. Herrero, D. Cipolletta, A. Naaz, J. Wong, A. Nayer, J. Lee, A. B. Goldfine, C. Benoist, S. Shoelson, and D. Mathis. 2009. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15: 930-939. https://doi.org/10.1038/nm.2002
- Chatzigeorgiou, A., K. J. Chung, R. Garcia-Martin, V. I. Alexaki, A. Klotzsche-von Ameln, J. Phieler, D. Sprott, W. Kanczkowski, T. Tzanavari, M. Bdeir, S. Bergmann, M. Cartellieri, M. Bachmann, P. Nikolakopoulou, A. Androutsellis-Theotokis, G. Siegert, S. R. Bornstein, M. H. Muders, L. Boon, K. P. Karalis, E. Lutgens, and T. Chavakis. 2014. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 60: 1196-1210. https://doi.org/10.1002/hep.27233
- Montes, V. N., M. S. Turner, S. Subramanian, Y. Ding, M. Hayden-Ledbetter, S. Slater, L. Goodspeed, S. Wang, M. Omer, L. J. Den Hartigh, M. M. Averill, K. D. O'Brien, J. Ledbetter, and A. Chait. 2013. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice. PLoS One 8: e67709.
- Poggi, M., D. Engel, A. Christ, L. Beckers, E. Wijnands, L. Boon, A. Driessen, J. Cleutjens, C. Weber, N. Gerdes, and E. Lutgens. 2011. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler. Thromb. Vasc. Biol. 31: 2251-2260. https://doi.org/10.1161/ATVBAHA.111.231357
- Guo, C. A., S. Kogan, S. U. Amano, M. Wang, S. Dagdeviren, R. H. Friedline, M. Aouadi, J. K. Kim, and M. P. Czech. 2013. CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 304: E951-963. https://doi.org/10.1152/ajpendo.00514.2012
- Leveille, C., M. Bouillon, W. Guo, J. Bolduc, E. Sharif-Askari, Y. El-Fakhry, C. Reyes-Moreno, R. Lapointe, Y. Merhi, J. A. Wilkins, and W. Mourad. 2007. CD40 ligand binds to alpha5beta1 integrin and triggers cell signaling. J. Biol. Chem. 282: 5143-5151. https://doi.org/10.1074/jbc.M608342200
- Zirlik, A., C. Maier, N. Gerdes, L. MacFarlane, J. Soosairajah, U. Bavendiek, I. Ahrens, S. Ernst, N. Bassler, A. Missiou, Z. Patko, M. Aikawa, U. Schonbeck, C. Bode, P. Libby, and K. Peter. 2007. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 115: 1571-1580. https://doi.org/10.1161/CIRCULATIONAHA.106.683201
- Ratziu, V. 2013. Pharmacological agents for NASH. Nat. Rev. Gastroenterol. Hepatol. 10: 676-685. https://doi.org/10.1038/nrgastro.2013.193
- Wang, X., N. Ota, P. Manzanillo, L. Kates, J. Zavala-Solorio, C. Eidenschenk, J. Zhang, J. Lesch, W. P. Lee, J. Ross, L. Diehl, N. van Bruggen, G. Kolumam, and W. Ouyang. 2014. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514: 237-241. https://doi.org/10.1038/nature13564
- Lee, M. W., J. I. Odegaard, L. Mukundan, Y. Qiu, A. B. Molofsky, J. C. Nussbaum, K. Yun, R. M. Locksley, and A. Chawla. 2015. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160: 74-87. https://doi.org/10.1016/j.cell.2014.12.011
- Brestoff, J. R., B. S. Kim, S. A. Saenz, R. R. Stine, L. A. Monticelli, G. F. Sonnenberg, J. J. Thome, D. L. Farber, K. Lutfy, P. Seale, and D. Artis. 2015. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519: 242-246. https://doi.org/10.1038/nature14115