DOI QR코드

DOI QR Code

The role of hepatic macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Cha, Ji-Young (Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, GAIHST, Gachon University College of Medicine) ;
  • Kim, Da-Hyun (Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine) ;
  • Chun, Kyung-Hee (Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine)
  • Received : 2018.08.23
  • Accepted : 2018.10.01
  • Published : 2018.12.31

Abstract

Nonalcoholic steatohepatitis (NASH) is becoming common chronic liver disease because of the increasing global prevalence of obesity and consequently Nonalcoholic fatty liver disease (NAFLD). However, the mechanism for progression of NAFLD to NASH and then cirrhosis is not completely understood, yet. The triggering of these hepatic diseases is thought from hepatocyte injury caused by over-accumulated lipid toxicity. Injured hepatocytes release damage-associated molecular patterns (DAMPs), which can stimulate the Kupffer cells (KCs), liver-resident macrophages, to release pro-inflammatory cytokines and chemokines, and recruit monocyte-derived macrophages (MDMs). The increased activation of KCs and recruitment of MDMs accelerate the progression of NAFLD to NASH and cirrhosis. Therefore, characterization for activation of hepatic macrophages, both KCs and MDMs, is a baseline to figure out the progression of hepatic diseases. The purpose of this review is to discuss the current understanding of mechanisms of NAFLD and NASH, mainly focusing on characterization and function of hepatic macrophages and suggests the regulators of hepatic macrophages as the therapeutic target in hepatic diseases.

Keywords

Acknowledgement

Supported by : NRF

References

  1. Carr RM, Oranu A, Khungar V. Nonalcoholic Fatty Liver Disease: Pathophysiology and Management. Gastroenterol Clin North Am 2016; 45(4): 639-652. https://doi.org/10.1016/j.gtc.2016.07.003
  2. Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci 2016; 73(10): 1969-1987. https://doi.org/10.1007/s00018-016-2161-x
  3. Caligiuri A, Gentilini A, Marra F. Molecular Pathogenesis of NASH. Int J Mol Sci 2016; 17(9).
  4. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998; 114(4): 842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  5. Lopez BG, Tsai MS, Baratta JL, Longmuir KJ, Robertson RT. Characterization of Kupffer cells in livers of developing mice. Comp Hepatol 2011; 10(1): 2. https://doi.org/10.1186/1476-5926-10-2
  6. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol 2017; 14(7): 397-411. https://doi.org/10.1038/nrgastro.2017.38
  7. Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 2017; 17(5): 306-321. https://doi.org/10.1038/nri.2017.11
  8. Grunhut J, Wang W, Aykut B, Gakhal I, Torres-Hernandez A, Miller G. Macrophages in Nonalcoholic Steatohepatitis: Friend or Foe? Eur Med J Hepatol 2018; 6(1): 100-109.
  9. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316-327. https://doi.org/10.1038/cmi.2015.104
  10. Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 2014; 60(5): 1090-1096. https://doi.org/10.1016/j.jhep.2013.12.025
  11. Devisscher L, Verhelst X, Colle I, Van Vlierberghe H, Geerts A. The role of macrophages in obesity-driven chronic liver disease. J Leukoc Biol 2016; 99(5): 693-698. https://doi.org/10.1189/jlb.5RU0116-016R
  12. Scott CL, Zheng F, De Baetselier P, Martens L, Saeys Y, De Prijck S, Lippens S, Abels C, Schoonooghe S, Raes G, Devoogdt N, Lambrecht BN, Beschin A, Guilliams M. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 2016; 7: 10321. https://doi.org/10.1038/ncomms10321
  13. Zhou D, Yang K, Chen L, Wang Y, Zhang W, Xu Z, Zuo J, Jiang H, Luan J. Macrophage polarization and function: new prospects for fibrotic disease. Immunol Cell Biol 2017; 95(10): 864-869. https://doi.org/10.1038/icb.2017.64
  14. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011; 11(11): 723-737. https://doi.org/10.1038/nri3073
  15. Abdullah Z, Knolle PA. Liver macrophages in healthy and diseased liver. Pflugers Arch 2017; 469(3-4): 553-560. https://doi.org/10.1007/s00424-017-1954-6
  16. Sun YY, Li XF, Meng XM, Huang C, Zhang L, Li J. Macrophage Phenotype in Liver Injury and Repair. Scand J Immunol 2017; 85(3): 166-174. https://doi.org/10.1111/sji.12468
  17. Duarte N, Coelho IC, Patarrao RS, Almeida JI, Penha-Goncalves C, Macedo MP. How Inflammation Impinges on NAFLD: A Role for Kupffer Cells. Biomed Res Int 2015; 2015: 984578.
  18. Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol 2010; 10(11): 753-766. https://doi.org/10.1038/nri2858
  19. You Q, Cheng L, Kedl RM, Ju C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 2008; 48(3): 978-990. https://doi.org/10.1002/hep.22395
  20. Lang PA, Recher M, Honke N, Scheu S, Borkens S, Gailus N, Krings C, Meryk A, Kulawik A, Cervantes-Barragan L, Van Rooijen N, Kalinke U, Ludewig B, Hengartner H, Harris N, Haussinger D, Ohashi PS, Zinkernagel RM, Lang KS. Tissue macrophages suppress viral replication and prevent severe immunopathology in an interferon-I-dependent manner in mice. Hepatology 2010; 52(1): 25-32. https://doi.org/10.1002/hep.23640
  21. Breous E, Somanathan S, Vandenberghe LH, Wilson JM. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009; 50(2): 612-621. https://doi.org/10.1002/hep.23043
  22. Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96(1): 447-455. https://doi.org/10.1172/JCI118055
  23. Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 1995; 22(2): 226-229. https://doi.org/10.1016/0168-8278(95)80433-1
  24. Fujimoto M, Uemura M, Nakatani Y, Tsujita S, Hoppo K, Tamagawa T, Kitano H, Kikukawa M, Ann T, Ishii Y, Kojima H, Sakurai S, Tanaka R, Namisaki T, Noguchi R, Higashino T, Kikuchi E, Nishimura K, Takaya A, Fukui H. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: relation to severity of liver disturbance. Alcohol Clin Exp Res 2000; 24(4 Suppl): 48s-54s. https://doi.org/10.1111/j.1530-0277.2000.tb00012.x
  25. Harte AL, da Silva NF, Creely SJ, McGee KC, Billyard T, Youssef-Elabd EM, Tripathi G, Ashour E, Abdalla MS, Sharada HM, Amin AI, Burt AD, Kumar S, Day CP, McTernan PG. Elevated endotoxin levels in non-alcoholic fatty liver disease. J Inflamm (Lond) 2010; 7: 15. https://doi.org/10.1186/1476-9255-7-15
  26. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, Garcia-Ruiz C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fasmediated steatohepatitis. Cell Metab 2006; 4(3): 185-198. https://doi.org/10.1016/j.cmet.2006.07.006
  27. Adkins Y, Schie IW, Fedor D, Reddy A, Nguyen S, Zhou P, Kelley DS, Wu J. A novel mouse model of nonalcoholic steatohepatitis with significant insulin resistance. Lab Invest 2013; 93(12): 1313-1322. https://doi.org/10.1038/labinvest.2013.123
  28. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. Tissue-resident macrophages originate from yolksac-derived erythro-myeloid progenitors. Nature 2015; 518(7540): 547-551. https://doi.org/10.1038/nature13989
  29. Antoniades CG, Quaglia A, Taams LS, Mitry RR, Hussain M, Abeles R, Possamai LA, Bruce M, McPhail M, Starling C, Wagner B, Barnardo A, Pomplun S, Auzinger G, Bernal W, Heaton N, Vergani D, Thursz MR, Wendon J. Source and characterization of hepatic macrophages in acetaminopheninduced acute liver failure in humans. Hepatology 2012; 56(2): 735-746. https://doi.org/10.1002/hep.25657
  30. Gonzalez-Dominguez E, Samaniego R, Flores-Sevilla JL, Campos-Campos SF, Gomez-Campos G, Salas A, Campos-Pena V, Corbi AL, Sanchez-Mateos P, Sanchez-Torres C. CD163L1 and CLEC5A discriminate subsets of human resident and inflammatory macrophages in vivo. J Leukoc Biol 2015; 98(4): 453-466. https://doi.org/10.1189/jlb.3HI1114-531R
  31. Tacke F, Randolph GJ. Migratory fate and differentiation of blood monocyte subsets. Immunobiology 2006; 211(6-8): 609-618. https://doi.org/10.1016/j.imbio.2006.05.025
  32. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 2010; 115(3): e10-9. https://doi.org/10.1182/blood-2009-07-235028
  33. Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C, Tacke F. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009; 50(1): 261-274. https://doi.org/10.1002/hep.22950
  34. Liaskou E, Zimmermann HW, Li KK, Oo YH, Suresh S, Stamataki Z, Qureshi O, Lalor PF, Shaw J, Syn WK, Curbishley SM, Adams DH. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 2013; 57(1): 385-398. https://doi.org/10.1002/hep.26016
  35. Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology 2014; 147(3): 577-594. https://doi.org/10.1053/j.gastro.2014.06.043
  36. Wang M, You Q, Lor K, Chen F, Gao B, Ju C. Chronic alcohol ingestion modulates hepatic macrophage populations and functions in mice. J Leukoc Biol 2014; 96(4): 657-665. https://doi.org/10.1189/jlb.6A0114-004RR
  37. Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 2005; 115(1): 56-65. https://doi.org/10.1172/JCI200522675
  38. Hirsova P, Ibrahim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 2016; 57(10): 1758-1770. https://doi.org/10.1194/jlr.R066357
  39. Ioannou GN, Subramanian S, Chait A, Haigh WG, Yeh MM, Farrell GC, Lee SP, Savard C. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH. J Lipid Res 2017; 58(6): 1067-1079. https://doi.org/10.1194/jlr.M072454
  40. Bieghs V, Wouters K, van Gorp PJ, Gijbels MJ, de Winther MP, Binder CJ, Lutjohann D, Febbraio M, Moore KJ, van Bilsen M, Hofker MH, Shiri-Sverdlov R. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 2010; 138(7): 2477-2486. https://doi.org/10.1053/j.gastro.2010.02.051
  41. Cai C, Zhu X, Li P, Li J, Gong J, Shen W, He K. NLRP3 Deletion Inhibits the Non-alcoholic Steatohepatitis Development and Inflammation in Kupffer Cells Induced by Palmitic Acid. Inflammation 2017; 40(6): 1875-1883. https://doi.org/10.1007/s10753-017-0628-z
  42. Bieghs V, van Gorp PJ, Walenbergh SM, Gijbels MJ, Verheyen F, Buurman WA, Briles DE, Hofker MH, Binder CJ, Shiri-Sverdlov R. Specific immunization strategies against oxidized low-density lipoprotein: a novel way to reduce nonalcoholic steatohepatitis in mice. Hepatology 2012; 56(3): 894-903. https://doi.org/10.1002/hep.25660
  43. Hirsova P, Gores GJ. Death Receptor-Mediated Cell Death and Proinflammatory Signaling in Nonalcoholic Steatohepatitis. Cell Mol Gastroenterol Hepatol 2015; 1(1): 17-27. https://doi.org/10.1016/j.jcmgh.2014.11.005
  44. Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59(3): 583-594. https://doi.org/10.1016/j.jhep.2013.03.033
  45. Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147(4): 765-783. https://doi.org/10.1053/j.gastro.2014.07.018
  46. Camell C, Goldberg E, Dixit VD. Regulation of Nlrp3 inflammasome by dietary metabolites. Semin Immunol 2015; 27(5): 334-342. https://doi.org/10.1016/j.smim.2015.10.004
  47. He K, Zhu X, Liu Y, Miao C, Wang T, Li P, Zhao L, Chen Y, Gong J, Cai C, Li J, Li S, Ruan XZ, Gong J. Inhibition of NLRP3 inflammasome by thioredoxin-interacting protein in mouse Kupffer cells as a regulatory mechanism for non-alcoholic fatty liver disease development. Oncotarget 2017; 8(23): 37657-37672.
  48. Szabo G, Iracheta-Vellve A. Inflammasome activation in the liver: Focus on alcoholic and non-alcoholic steatohepatitis. Clin Res Hepatol Gastroenterol 2015; 39 Suppl 1: S18-23. https://doi.org/10.1016/j.clinre.2015.06.012
  49. Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, Fujisawa M, Higuchi T, Nakamura H, Matsumoto N, Yamagami H, Ogawa M, Imazu H, Kuroda K, Moriyama M. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol 2018; 24(25): 2661-2672. https://doi.org/10.3748/wjg.v24.i25.2661
  50. Akazawa Y, Nakao K. Lipotoxicity pathways intersect in hepatocytes: Endoplasmic reticulum stress, c-Jun N-terminal kinase-1, and death receptors. Hepatol Res 2016; 46(10): 977-984. https://doi.org/10.1111/hepr.12658
  51. Wree A, Mehal WZ, Feldstein AE. Targeting Cell Death and Sterile Inflammation Loop for the Treatment of Nonalcoholic Steatohepatitis. Semin Liver Dis 2016; 36(1): 27-36. https://doi.org/10.1055/s-0035-1571272
  52. Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and Oxidative stress in the pathogenesis of Non-alcoholic fatty liver disease. Free Radic Res 2015; 49(12): 1405-1418. https://doi.org/10.3109/10715762.2015.1078461
  53. Tacke F. Targeting hepatic macrophages to treat liver diseases. J Hepatol 2017; 66(6): 1300-1312. https://doi.org/10.1016/j.jhep.2017.02.026
  54. Thomas P, Lazure DA, Moussa R, Bajenova O, Burke PA, Ganguly A, Forse RA. Identification of two novel LPS-binding proteins in Kupffer cells: implications in TNF-alpha production. J Endotoxin Res 2006; 12(6): 352-357. https://doi.org/10.1177/09680519060120060501
  55. Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 2012; 6(2): 149-171. https://doi.org/10.5009/gnl.2012.6.2.149
  56. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007; 47(4): 571-579. https://doi.org/10.1016/j.jhep.2007.04.019
  57. Xu Z, Zhang X, Lau J, Yu J. C-X-C motif chemokine 10 in nonalcoholic steatohepatitis: role as a pro-inflammatory factor and clinical implication. Expert Rev Mol Med 2016; 18: e16. https://doi.org/10.1017/erm.2016.16
  58. Stojsavljeviæ S, Gomereiæ Paleiæ M, Viroviæ Jukiæ L, Smireiæ Duvnjak L, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20(48): 18070-18091. https://doi.org/10.3748/wjg.v20.i48.18070
  59. Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A. The role of immune cells in metabolismrelated liver inflammation and development of non-alcoholic steatohepatitis (NASH). Re Endocr Metab Disord 2016; 17(1): 29-39. https://doi.org/10.1007/s11154-016-9339-2
  60. Nakamoto N, Kanai T. Role of toll-like receptors in immune activation and tolerance in the liver. Front Immunol 2014; 5: 221.
  61. Gao B, Tsukamoto H. Inflammation in Alcoholic and Nonalcoholic Fatty Liver Disease: Friend or Foe? Gastroenterology 2016; 150(8): 1704-1709. https://doi.org/10.1053/j.gastro.2016.01.025
  62. Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13(2): 88-110. https://doi.org/10.1038/nrgastro.2015.200

Cited by

  1. Sarcopenia and fatty liver disease vol.13, pp.6, 2018, https://doi.org/10.1007/s12072-019-09996-7
  2. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.03133
  3. Indole-3-Acetic Acid Alleviates Nonalcoholic Fatty Liver Disease in Mice via Attenuation of Hepatic Lipogenesis, and Oxidative and Inflammatory Stress vol.11, pp.9, 2019, https://doi.org/10.3390/nu11092062
  4. Potential Therapeutic Application of Estrogen in Gender Disparity of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis vol.8, pp.10, 2018, https://doi.org/10.3390/cells8101259
  5. TRIB1 rs17321515 gene polymorphism increases the risk of coronary heart disease in general population and non-alcoholic fatty liver disease patients in Chinese Han population vol.18, pp.1, 2019, https://doi.org/10.1186/s12944-019-1108-2
  6. The anti-inflammatory, anti-oxidant and protective effects of a probiotic mixture on organ toxicity in a rat model vol.15, pp.6, 2018, https://doi.org/10.2217/fmb-2020-0005
  7. Impact of tissue macrophage proliferation on peripheral and systemic insulin resistance in obese mice with diabetes vol.8, pp.1, 2018, https://doi.org/10.1136/bmjdrc-2020-001578
  8. Chemical hypoxia induces pro-inflammatory signals in fat-laden hepatocytes and contributes to cellular crosstalk with Kupffer cells through extracellular vesicles vol.1866, pp.6, 2020, https://doi.org/10.1016/j.bbadis.2020.165753
  9. A 3‐week nonalcoholic steatohepatitis mouse model shows elafibranor benefits on hepatic inflammation and cell death vol.13, pp.3, 2018, https://doi.org/10.1111/cts.12735
  10. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling vol.10, pp.8, 2020, https://doi.org/10.3390/metabo10080326
  11. Immunological distinctions between nonalcoholic steatohepatitis and hepatocellular carcinoma vol.52, pp.8, 2018, https://doi.org/10.1038/s12276-020-0480-3
  12. Therapeutic Targeting of Hepatic Macrophages vol.1, pp.3, 2020, https://doi.org/10.1007/s43152-020-00008-7
  13. Co-encapsulation of HNF4α overexpressing UMSCs and human primary hepatocytes ameliorates mouse acute liver failure vol.11, pp.1, 2020, https://doi.org/10.1186/s13287-020-01962-7
  14. Inflammation/bioenergetics-associated neurodegenerative pathologies and concomitant diseases: a role of mitochondria targeted catalase and xanthophylls vol.16, pp.2, 2018, https://doi.org/10.4103/1673-5374.290878
  15. Effects of renalase deficiency on liver fibrosis markers in a nonalcoholic steatohepatitis mouse model vol.23, pp.3, 2018, https://doi.org/10.3892/mmr.2021.11849
  16. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease vol.15, pp.7, 2018, https://doi.org/10.1080/17474124.2021.1887730
  17. miR‐21‐regulated M2 polarization of macrophage is involved in arsenicosis‐induced hepatic fibrosis through the activation of hepatic stellate cells vol.236, pp.8, 2018, https://doi.org/10.1002/jcp.30288
  18. Visfatin exacerbates hepatic inflammation and fibrosis in a methionine‐choline‐deficient diet mouse model vol.36, pp.9, 2018, https://doi.org/10.1111/jgh.15465