• Title/Summary/Keyword: Liver inflammation

Search Result 500, Processing Time 0.023 seconds

Peri-Operative Liver Fibrosis and Native Liver Survival in Pediatric Patients with Biliary Atresia: A Systematic Review and Meta-Analysis

  • Jahangirnia, Ashkan;Oltean, Irina;Nasr, Youssef;Islam, Nayaar;Weir, Arielle;Nanassy, Joseph de;Nasr, Ahmed;Demellawy, Dina El
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.25 no.5
    • /
    • pp.353-375
    • /
    • 2022
  • No systematic review to date has examined histopathological parameters in relation to native liver survival in children who undergo the Kasai operation for biliary atresia (BA). A systematic review and meta-analysis is presented, comparing the frequency of native liver survival in peri-operative severe vs. non-severe liver fibrosis cases, in addition to other reported histopathology parameters. Records were sourced from MEDLINE, Embase, and CENTRAL databases. Studies followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and compared native liver survival frequencies in pediatric patients with evidence of severe vs. non-severe liver fibrosis, bile duct proliferation, cholestasis, lobular inflammation, portal inflammation, and giant cell transformation on peri-operative biopsies. The primary outcome was the frequency of native liver survival. A random effects meta-analysis was used. Twenty-eight observational studies were included, 1,171 pediatric patients with BA of whom 631 survived with their native liver. Lower odds of native liver survival in the severe liver fibrosis vs. non-severe liver fibrosis groups were reported (odds ratio [OR], 0.16; 95% confidence interval [CI], 0.08-0.33; I2=46%). No difference in the odds of native liver survival in the severe bile duct destruction vs. non-severe bile duct destruction groups were reported (OR, 0.17; 95% CI, 0.00-63.63; I2=96%). Lower odds of native liver survival were documented in the severe cholestasis vs. non-severe cholestasis (OR, 0.10; 95% CI, 0.01-0.73; I2=80%) and severe lobular inflammation vs. non-severe lobular inflammation groups (OR, 0.02; 95% CI, 0.00-0.62; I2=69%). There was no difference in the odds of native liver survival in the severe portal inflammation vs. non-severe portal inflammation groups (OR, 0.03; 95% CI, 0.00-3.22; I2=86%) or between the severe giant cell transformation vs. non-severe giant cell transformation groups (OR, 0.15; 95% CI, 0.00-175.21; I2=94%). The meta-analysis loosely suggests that the presence of severe liver fibrosis, cholestasis, and lobular inflammation are associated with lower odds of native liver survival in pediatric patients after Kasai.

Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model

  • Danbi Jo;Yoon Seok Jung;Juhyun Song
    • Clinical Nutrition Research
    • /
    • v.12 no.2
    • /
    • pp.154-167
    • /
    • 2023
  • Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.

Anti-inflammatory Modulating Effect of Rengyolone in Rat

  • Lee, Gil-Hyon;Hyun, Kyung-Yae;Kang, Yoon-Jung
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.54-59
    • /
    • 2019
  • Hepatitis refers to inflammation of hepatocytes and liver tissue, and is mainly caused by viruses, alcohol, and drugs. Forsythiae Fructus has traditionally been used as a diuretic, anti-inflammatory and antipyretic. Research on rengyolone, a bioactive substance extracted from Forsythiae Fructus, is rarely found in Korea and abroad. First, an acute animal toxicity test for rengyolone was conducted for the animal experiment. 4 week-old SD rats were injected intraperitoneally with acetaminophen for 2 weeks to induce chronic liver inflammation. Rengyolone was orally administered into two groups during 4 weeks: pre-inflammatory group and post-inflammatory group. Oral doses were also divided into 1 mg/kg and 5 mg/kg. Liver function tests (ALT, AST, ALP), western blot analysis of liver tissue, and level of inflammatory cytokine were performed to evaluate the improvement of hepatitis. Experimental results showed that rengyolone inhibited the development of acute inflammation and thus could reduce hepatitis symptoms.

Histological Analysis of Hepatic Steatosis, Inflammation, and Fibrosis in Ascorbic Acid-Treated Ovariectomized Mice

  • Lee, Mijeong;Jeon, Suyeon;Lee, Jungu;Lee, Dongju;Yoon, Michung
    • Biomedical Science Letters
    • /
    • v.28 no.2
    • /
    • pp.101-108
    • /
    • 2022
  • High-fat diet (HFD)-fed ovariectomized (OVX) female mice were used as an animal model of obese postmenopausal women. We investigated the effects of ascorbic acid on the histological changes induced in the liver. Plasma alanine aminotransferase levels and liver weights were higher in mice fed an HFD for 18 weeks than in mice fed a low-fat diet, effects that were inhibited by ascorbic acid. Similarly, mice fed an ascorbic acid-supplemented HFD had less hepatic lipid accumulation than did mice fed an HFD alone. Moreover, administration of ascorbic acid reduced inflammatory cells, including mast cells and CD68-positive cells, and inflammatory foci in the liver and inhibited hepatocyte ballooning. Hepatic collagen levels were lower in ascorbic acid-treated versus non-treated mice. These results suggest that ascorbic acid inhibits hepatic steatosis, inflammation, and fibrosis in obese OVX mice. Thus, ascorbic acid intake may be useful for postmenopausal women with nonalcoholic fatty liver disease.

The Antimicrobial Insect Peptide CopA3 Blocks Ethanol-Induced Liver Inflammation and Liver Cell Injury in Mice

  • Kim, Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.157-163
    • /
    • 2022
  • Alcoholic liver disease (ALD), which encompasses alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, is a major cause of morbidity and mortality worldwide. Although the economic and health impacts of ALD are clear, few advances have been made in its prevention or treatment. We recently demonstrated that the insect-derived antimicrobial peptide CopA3 exerts anti-apoptotic and anti-inflammatory activities in various cell systems, including neuronal cells and colonic epithelial cells. Here, we tested whether CopA3 inhibits ethanol-induced liver injury in mice. Mice were intraperitoneally injected with ethanol only or ethanol plus CopA3 for 24 h and then liver injury and inflammatory responses were measured. Ethanol enhanced the production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IL-10. It also induced hepatocyte apoptosis and ballooning degeneration in hepatocytes. Notably, all these effects were eliminated or significantly reduced by CopA3 treatment. Collectively, our findings demonstrate that CopA3 ameliorates ethanol-induced liver cell damage and inflammation, suggesting the therapeutic potential of CopA3 for treating ethanol-induced liver injury.

PXR Mediated Protection against Liver Inflammation by Ginkgolide A in Tetrachloromethane Treated Mice

  • Ye, Nanhui;Wang, Hang;Hong, Jing;Zhang, Tao;Lin, Chaotong;Meng, Chun
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • The pregnane X receptor (PXR), a liver and intestine specific receptor,, has been reported to be related with the repression of inflammation as well as activation of cytochromosome P450 3A (CYP3A) expression. We examined the effect of PXR on tetrachloromethane (CCl4)-induced mouse liver inflammation in this work. Ginkgolide A, one main component of Ginkgo biloba extracts (GBE), activated PXR and enhanced PXR expression level, displayed both significant therapeutic effect and preventive effect against $CCl_4$-induced mouse hepatitis. siRNA-mediated decrease of PXR expression significantly reduced the efficacy of Ginkgolide A in treating $CCl_4$-induced inflammation in mice. Flavonoids, another important components of GBE, were shown anti-inflammatory effect in a different way from Ginkgolide A which might be independent on PXR because flavonoids significantly inhibited CYP3A11 activities in mice. The results indicated that anti-inflammatory effect of PXR might be mediated by enhancing transcription level of $I{\kappa}B{\alpha}$ through binding of $I{\kappa}B{\alpha}$. Inhibition of NF-${\kappa}B$ activity by NF-${\kappa}B$-specific suppressor $I{\kappa}B{\alpha}$ is one of the potential mechanisms of Ginkgolide A against CCl4-induced liver inflammation.

Roles of heterogenous hepatic macrophages in the progression of liver diseases

  • Lee, Kyeong-Jin;Kim, Mi-Yeon;Han, Yong-Hyun
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.166-174
    • /
    • 2022
  • Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.

Ga-mi-Yuk-Mi-Jihwang-Tang Ameliorates LPS-injected acute Liver Injury via Regulation of Sirtuin6 in Inflammasome Triggered-pyroptosis Using Mice Model

  • 임수아;조명래;김태수;성수희;김보람;최경민;정진우
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.114-114
    • /
    • 2022
  • Excessive endogenous endotoxin, especially lipopolysaccharide (LPS) reflux from gastrointestinal (GI) tract to the liver tissue is one of the most serious reasons of severe and acute liver injury which is mainly mediated by Kupffer cell activations. However, there is no clear molecular clues to explain the exact pathophysiological mechanism and effective drugs available till nowadays. We aimed to comprehend the pathophysiological features of LPS-induced liver injury and evaluate the efficacies of potential therapeutic drug, Ga-mi-Yuk-Mi-Jihwang-Tang (GYM), which is composed of herbal plants. GYM remarkably caused to normalize hepatic inflammation and oxidations against LPS-induced liver injury by evidence of serum liver enzymes, histopathological analysis, both hepatic protein and gene expression levels of pro-inflammatory cytokines, nitric oxide levels, and hepatic tissue levels of reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 4-hydroxyneoneal, respectively. To assess molecular events in the hepatic tissue, we further found hepatic Sirtuin6 (Sirt6) levels were considerably depleted by LPS injection with aberrant alterations of Nrf2/HO-1 signaling pathways, whereas administration with GYM notably exerted to normalize these abnormalities. Our results exhibited that GYM would be one of target drug to diminish hepatic inflammation as well as oxidative stress by regulation of hepatic Sirt6 levels.

  • PDF

Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Young-Su Yi
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.122-128
    • /
    • 2024
  • Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.

Metformin ameliorates bile duct ligation-induced acute hepatic injury via regulation of ER stress

  • Lee, Chi-Ho;Han, Jung-Hwa;Kim, Sujin;Lee, Heejung;Kim, Suji;Nam, Dae-Hwan;Cho, Du-Hyong;Woo, Chang-Hoon
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.311-316
    • /
    • 2020
  • Cholestasis is a condition in which the bile duct becomes narrowed or clogged by a variety of factors and bile acid is not released smoothly. Bile acid-induced liver injury is facilitated by necrotic cell death, neutrophil infiltration, and inflammation. Metformin, the first-line treatment for type 2 diabetes, is known to reduce not only blood glucose but also inflammatory responses. In this study, we investigated the effects of metformin on liver injury caused by cholestasis with bile acid-induced hepatocyte injury. Static bile acid-induced liver injury is thought to be related to endoplasmic reticulum (ER) stress, inflammatory response, and chemokine expression. Metformin treatment reduced liver injury caused by bile acid, and it suppressed ER stress, inflammation, chemokine expression, and neutrophil infiltration. Similar results were obtained in mouse primary hepatocytes exposed to bile acid. Hepatocytes treated with tauroursodeoxycholic acid, an ER stress inhibitor, showed inhibition of ER stress, as well as reduced levels of inflammation and cell death. These results suggest that metformin may protect against liver injury by suppressing ER stress and inflammation and reducing chemokine expression.