
ABSTRACT

Hepatic encephalopathy (HE) associated with liver failure is accompanied by 
hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as 
well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to 
identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related 
glycoprotein that is secreted by various organs and is involved in cellular mechanisms 
including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and 
neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain 
cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 
both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed 
changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron 
metabolism related to gene expression through AKT-mediated signaling both in the brain 
cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 
on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that 
regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate 
neuropathological problems focused on the liver-brain axis.

Keywords: Hepatic encephalopathy (HE); Lipocalin-2; Hyperammonemia; Neuron;  
Brain inflammation

INTRODUCTION

Hepatic encephalopathy (HE), which is caused by liver failure and portosystemic shunting, 
is accompanied by neurological or psychiatric dysfunction as well as hyperammonemia, 
severe inflammation, and cholinergic neuronal dysfunction [1,2]. In addition, patients 
with HE exhibit various neurological features such as cognitive impairment, personality 
changes, sleep disturbances, motor abnormalities, depressive symptoms, brain edema, 
and brain atrophy [3-6]. In the central nervous system (CNS), hyperammonemia leads to 
astrocyte swelling [7], an impaired glutamate system [8], and mitochondrial dysfunction 
[9] and ultimately contributes to glial and neuronal dysfunction. A bile duct ligation (BDL) 
model is commonly used as a mouse model of HE; this model exhibits memory impairment, 
decreased brain cholinergic activity, hyperammonemia, increased blood-brain barrier 
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permeability, and motor dysfunction [10-14]. In this study, we used a BDL mouse model to 
evaluate for neurological changes in HE.

Recent studies have highlighted the liver-brain-inflammation axis to elucidate the 
neurological alterations caused by liver failure [15,16]. Several studies have mentioned 
that increased levels of endotoxin and pro-inflammatory cytokines in blood plasma cause 
depressive-like behavior and memory loss [17-20]. Liver failure with liver inflammation is 
associated with Kupffer cell activation and high secretion of pro-inflammatory cytokines 
such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 [21-23]. Some studies 
have reported that TNF-α is a crucial factor related to sleep disturbances, fatigue, and 
depressive symptoms [24,25]. The liver is innervated by vagal nerve afferents, and cytokines 
secreted by the liver can activate these [26,27]. Inflammatory mediators such as cytokines 
and chemokines in the blood regulate immune cell infiltration and induce behavioral changes 
in the brains of BDL model mice [28,29].

Lipocalin-2, which is also known as neutrophil gelatinase-associated lipocalin (NGAL), 
is an approximately 25-kDa glycoprotein [30] that is expressed in human neutrophils 
[31]. Lipocalin-2 also modulates complex cellular mechanisms including innate immune 
responses [32], cell proliferation [33], cellular apoptosis [34], pathogen clearance [35], 
metabolism homeostasis [36], tumor metastasis [37], and iron metabolism [32]. In addition, 
lipocalin-2 modulates metabolic responses such as hyperglycemia, dyslipidemia, and glucose 
metabolism through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 
signaling [38].

In the CNS, the lipocalin-2 receptor is highly expressed in neurons, microglia, and astrocytes 
[39], and lipocalin-2 has been shown to control iron accumulation, amyloid beta (Aβ) 
accumulation, and astrocyte function in Alzheimer’s disease (AD) model brains [40,41]. A 
current study reports that lipocalin-2 is a critical inflammatory mediator that controls the 
interaction between neurons and microglia and is involved in cognitive function [42].

Lipocalin-2 is known to regulate inflammatory responses through TNF receptor 2-mediated 
phosphoinositide 3-kinase (PI3K)/AKT, NF-κB [43], and CCAAT/enhancer-binding protein 
(C/EBP) activation [44]. High levels of hepatic lipocalin-2 are found in liver failure models 
and promote liver fibrosis by mediating by pro-inflammatory cytokines and chemokines 
[45,46]. One study mentions that hepatic lipocalin-2 is considered a prognostic factor in 
patients with liver failure and alcoholic hepatitis [47].

Thus, we investigated the function and specific pathway of lipocalin-2 in the brains of mice in a 
BDL mouse model of HE. We also confirmed alterations in several inflammatory mediators in 
neuronal cells by lipocalin-2 treatment. In this study, we emphasized the importance of hepatic 
lipocalin-2 for neuronal cell function in the brain in HE, focusing on the liver-brain axis.

MATERIALS AND METHODS

BDL surgery
Twelve-week-old wild-type C57BL/6J male mice (Koatech, Pyeongtaek, Korea) were housed 
in the Laboratory Animal Research Center, Chonnam National University (CNU), under 
a 16-hour light/8-hour dark cycle at 23°C with 60% humidity and given ad libitum access 

155

CLINICAL NUTRITION RESEARCH

https://e-cnr.org

https://e-cnr.org


Role of Lipocalin-2 in Hepatic Encephalopathy Model

https://doi.org/10.7762/cnr.2023.12.2.154

to water and food. Mice underwent BDL or a sham operation. BDL was performed using 
5-0 black silk suture under 2% isoflurane anesthesia. Experiments were conducted two 
weeks postoperatively. The experiments were conducted following the recommendations 
of “96 Guidance for Animal Experiments” by the Animal Committee at CNU. The animal 
experimental protocol was approved by the Animal Ethics Committee at CNU (CNU 
IACUC-H-2022-8).

Cell cultures and treatment conditions
The Neuro-2a (N2A) cell line was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
containing 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, and 100 U/mL penicillin-
streptomycin. Cells were cultured at 5% CO2 at 37°C. The culture media was changed once 
every 2 days. We induced differentiation of N2A cells by adding 20 μM all-trans retinoic acid 
(Sigma-Aldrich, St. Louis, MO, USA) to DMEM containing 2% FBS, 1 mM sodium pyruvate, 
and 100 U/mL penicillin-streptomycin culture media. N2A cells were treated with or without 
1 μg/mL mouse recombinant lipocalin-2 (50060-M08H; Sino Biological, Chesterbrook,PA, 
USA) and 30 mM NH4Cl (A9434; Sigma-Aldrich) for 24 hours.

RNA isolation and analysis
Total RNA was isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), in accordance 
with the manufacturer’s instructions, and used as template to synthesize cDNA with 
TOPscript RT DryMix (dT18 plus; Enzynomics, Daejeon, Korea). The cDNAs were analyzed 
using the Applied Biosystems StepOnePlus real-time PCR system (Applied Biosystems, 
Foster City, CA, USA) and Power SYBR Green PCR Master Mix (Applied Biosystems). Based 
on the obtained cycle threshold values, the mRNA expression was calculated using the 
2−ΔΔCT method. All primers are listed in Supplementary Table 1. Data were normalized to 
L32 (mouse) expression, which was determined using 5′-TCTGGTGAAGCCCAAGATGG-3′ 
(forward) and 5′-CTCTGGGTTTCCGCCAGT-3′ (reverse) primers.

Western blot analysis
The N2A cells and brain tissue were lysed in ice-cold radioimmunoprecipitation assay buffer 
(Translab, Carpentersville, IL, USA) for 15 minutes on ice. The protein concentration of protein 
extract was quantified using a bicinchoninic acid protein assay kit (Thermo Fisher Scientific, 
Waltham, MA, USA). Protein (50–70 μg) was separated on 10%–12% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, and the protein was transferred onto polyvinylidene 
fluoride (PVDF; Millipore, Burlington, MA, USA) membranes activated with absolute methanol. 
The PVDF membranes were incubated with 5% bovine albumin (GenDEPOT, Katy, TX, USA) 
and 5% skim milk (BD Bioscience, San Jose, CA, USA) in 1× Tris buffered saline with Tween 20 
buffer for 1 hour and 30 minutes at room temperature. After incubation, the membranes were 
incubated with the following primary antibodies (1:1,000 dilution) overnight at 4°C: anti-p AKT 
(9271s; Cell Signaling Technology, Danvers, MA, USA), anti-AKT (UST4691p; Cell Signaling 
Technology), and anti-β-actin (MAB8929; AbFrontier, Seoul, Korea).

After the primary antibody incubation, the membranes were incubated with horseradish 
peroxidase (HRP)-labeled secondary antibody (1:5,000 dilution) for 2 hours at room 
temperature. The membranes were visualized using an enhanced chemiluminescence 
solution (Thermo Fisher Scientific) with Fusion Solo software (Vilber, Collégien, France). 
Protein expression was analyzed using ImageJ (provided from National Institutes of Health), 
the protein level was normalized to the β-actin protein level, and the phosphorylation of 
protein was normalized to the total form of the protein.
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Lipocalin-2 enzyme-linked immunosorbent assay (ELISA)
Mouse plasma samples were analyzed using a sandwich ELISA to measure lipocalin-2 
levels (MLCN20; R&D Systems, Minneapolis, MN, USA). All assays were performed as 
recommended by the manufacturers. Mouse plasma was mixed with 1X assay diluent and 
incubated for 2.5 hours at room temperature. After incubation, biotin conjugate was added 
to each sample, and the mixture was incubated for one hour at room temperature with gentle 
shaking. After incubation, 1X streptavidin-HRP solution was added to each sample, and 
they were incubated 45 minutes at room temperature with gentle shaking. After incubation, 
3,3′,5,5′-tetramethylbenzidine substrate was added to each well, and they were incubated for 
30 minutes at room temperature in the dark. After incubation, stop solution was added to 
each well, and lipocalin-2 was measured at 450 nm using an Epoch microplate reader.

Statistical analysis
All data are presented as the group mean ± standard error of the mean. Statistical analysis was 
conducted using unpaired 2-tailed t-test with Welch’s correction in Prism 8 (GraphPad Software 
Inc, La Jolla, CA, USA). Data were considered significant at p < 0.05, p < 0.01, and p < 0.005.

RESULTS

Lipocalin-2 levels are increased in the livers of BDL model mice
Changes in the concentration of plasma lipocalin-2 after BDL surgery were evaluated using 
ELISA (Figure 1A). BDL surgery significantly increased the concentration of lipocalin in 
the blood of model mice compared with sham-operated mice. We examined whether BDL 
surgery regulated the gene and protein expression of lipocalin-2 in the impaired liver (Figure 
1B and 1C). BDL surgery increased the expression of lipocalin-2 mRNA and protein in liver 
tissue from model mice compared with sham-operated mice.

Lipocalin-2 signaling is activated in the brain cortices of BDL model mice.
We next examined the expression of genes and proteins related to inflammation, insulin 
resistance, and iron metabolism, which are known target genes of lipocalin-2, in the 
brain cortices of model mice. We measured the expression of inflammation-related genes 
in the brain cortices of BDL model mice (Figure 2A). The gene expression of IL-1β and 
cyclooxygenase-2 (Cox-2) was confirmed to be increased by BDL surgery. This result indicates 
that inflammation is increased in the brain cortices of BDL model mice. BDL surgery 
decreased the expression of hepcidin antimicrobial peptide 1 (Hamp1), a gene related to 
insulin resistance, and significantly increased the expression of transferrin receptor 1 (Tfr1), 
which is related to iron metabolism (Figure 2B). We measured the phosphorylation of 
AKT using western blot (Figure 2C, Supplementary Figure 1). BDL surgery induced insulin 
resistance through dephosphorylation of AKT (serine 473) in the cortex. Therefore, an 
increased concentration of lipocalin-2 induced by BDL surgery was confirmed to regulate the 
expression of the target genes of lipocalin-2.

Lipocalin-2 regulates neuronal cell function through the AKT pathway
To induce an in vitro model of BDL surgery, neurons were treated with lipocalin-2. To 
determine whether lipocalin-2 regulates the intracellular metabolism of neuronal cells, we 
measured the mRNA and protein expression of factors related to inflammation, insulin 
resistance, and iron metabolism. The mRNA expression of IL-1β and Cox-2 in neuronal 
cells was increased by lipocalin-2 treatment (Figure 3A). The mRNA expression of bone 
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morphogenetic protein 6 (Bmp6), which is related to insulin resistance, and Tfr1, which is 
related to iron metabolism, in neuronal cells was increased by lipocalin-2 (Figure 3B). We 
also confirmed dephosphorylation of AKT in neuronal cells by lipocalin-2 (Figure 3C). These 
results indicate that lipocalin-2 regulates intracellular metabolism such as inflammation, 
insulin resistance, and iron metabolism in neuronal cells.

DISCUSSION

Herein, we investigated the roles of lipocalin-2 secreted by the liver in the brain HE using 
a BDL mouse model. First, we found elevated expression of lipocalin-2 both in the blood 
plasma and liver in BDL model mice compared with normal mice. According to a recent 
study, liver fibrosis caused by BDL causes inflammation, severe oxidative stress, and 
cellular apoptosis related to lipocalin-2 [48]. One study reported that lipocalin-2 induced 
the secretion of pro-inflammatory cytokines such as IL-1β through NF-κB activation in 
hepatocytes in liver disease [49]. Another study mentioned that elevated serum levels of 
lipocalin-2 were due to increased secretion by the liver and led to IL-6 secretory signaling 
[50]. Furthermore, increased levels of lipocalin-2 in plasma are linked to chronic liver failure 
and nonalcoholic steatohepatitis and have the potential to predict liver recovery [51,52]. 
Elevated levels of lipocalin-2 in blood plasma are associated with some neurological diseases 
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Figure 1. Lipocalin-2 gene expression is increased in the livers of BDL model mice. 
(A) Lipocalin-2 levels measured by ELISA in sham-operated or BDL-treated mice. (B) RT-qPCR analysis of the total 
RNA isolated from liver tissues from sham-operated or BDL-treated mice. (C) Western blot analyses showing the 
expression of lipocalin-2 in liver tissues from sham-operated or BDL-treated mice. Data are reported as the mean 
± standard deviation. All data were analyzed by 2-tailed Student’s t-test. 
BDL, bile duct ligation; ELISA, enzyme-linked immunosorbent assay; RT-qPCR, reverse transcription-quantitative 
polymerase chain reaction; Lcn2, lipocalin-2. 
*p < 0.05, **p < 0.01, ***p < 0.001.
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such as Parkinson’s disease [53]. Furthermore, hepatic lipocalin-2 is increased in liver 
damage models and promotes inflammatory cytokines [45,46]. Given this evidence, elevated 
levels of lipocalin-2 both in the blood and liver may be related to liver dysfunction, increased 
inflammatory responses mediated by cytokines, and neurological changes.

Next, we observed significantly increased expression of IL-1β, Cox2, and Tfr1, reduced expression 
of Tfr1, and reduced phosphorylation of AKT in the brain cortices of BDL model mice. One 
current study found elevated mRNA levels of lipocalin-2 in the brain cortex accompanied 
by hyperammonemia in HE [54]. In the CNS, IL-1β is a major pro-inflammatory cytokine 
that aggravates inflammatory and immune responses [55]. Increased levels of IL-1β disturb 
neuronal differentiation [56], cell proliferation, neurite outgrowth, and apoptosis [57,58] in 
the brain [59]. In addition, IL-1β can stimulate Cox2 activation in CNS cells and is involved in 
pain hypersensitivity [60-63]. Cox-2 is a major regulator of increased prostaglandin E2 (PGE2) 
synthesis after an inflammatory response in cells [60] through G protein-coupled receptors 
[64,65]. Increased expression of Cox2 in the CNS accelerates inflammation [60] and is related 
to the neuropathogenesis of AD through the NF-κB pathway [66,67].

Based on our data, we assume that there is an increased inflammatory response, immune 
response, apoptosis, and pain hypersensitivity as well as reduced neuronal differentiation and 
suppressed neurite outgrowth in the brain cortices of BDL model mice. In the CNS, the PI3K/
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Figure 2. Cytokine and iron metabolism gene expression and AKT phosphorylation are increased in the brain cortices in BDL model mice. 
(A, B) RT-qPCR analysis of total RNA isolated from cortex tissues from sham-operated or BDL-treated mice. (C) Western blot analyses showing the expression 
of AKT and p-AKT in cortex tissues from sham-operated or BDL-treated mice. Data are reported as the mean ± standard deviation. All data were analyzed by 
2-tailed Student’s t-test. 
BDL, bile duct ligation; RT-qPCR, reverse transcription-quantitative polymerase chain reaction; Il, interleukin; Cox2, cyclooxygenase 2; Hamp1, hepcidin 
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*p < 0.05, **p < 0.01, ***p < 0.001.
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AKT pathway is a crucial signaling pathway that regulates inflammatory responses in CNS cells 
[68] and is involved in neuronal differentiation [69]. In addition, NF-κB signaling is induced 
by PI3K/AKT [70,71]. The PI3K/AKT pathway regulates the secretion of pro-inflammatory 
cytokines such as IL-6 and IL-1β in dendritic cells [72], microglia [73], and neurons [74], 
production of anti-inflammatory cytokines [75], and neuronal cell survival [76].

Some studies have reported that lipocalin-2 promotes activation of PI3K/AKT signaling and 
induces cell proliferation [77], and its promoter has a binding site for NF-κB [78]. One study 
reported that lipocalin-2 attenuated the activation of the PI3K/AKT pathway and subsequently 
led to inhibition of cell proliferation [79]. Based on this evidence, we speculate that lipocalin-2 
may attenuate neuronal differentiation and increase neuroinflammation through increased 
secretion of inflammatory cytokines in the brain by suppression of AKT-mediated signaling.

Hamp1 is a small hormone peptide that is produced by hepatocytes and regulates iron 
metabolism [80]. Hepcidin modulates iron absorption through iron homeostasis [74]. 
Furthermore, the level of hepcidin has been correlated with liver dysfunction [81]. One recent 
study showed that the overexpression of hepcidin in astrocytes inhibited brain damage due 
to Aβ toxicity [80]. Aβ is a major pathological factor in AD [82], and excessive accumulation 
and aggregation of Aβ cause memory impairment and cognitive dysfunction [83]. Another 
study reported that hepcidin was strongly related to iron accumulation in the brain in AD and 
affected the progression of its neuropathogenesis [84]. Our data showed that reduced levels 
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Figure 3. Cytokine and iron metabolism gene expression and AKT phosphorylation are increased by lipocalin-2 treatment in N2A cells. 
(A, B) RT-qPCR analysis of the total RNA isolated from N2A cells. (C) Western blot analyses showing the expression of AKT and p-AKT in N2A cells. Data are 
reported as the mean ± standard deviation. All data were analyzed by 2-tailed Student’s t-test. 
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*p < 0.05, **p < 0.01.
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of the Hamp1 gene in the brain cortices of BDL model mice might be linked to a reduced cell 
protective effect and impaired iron metabolism in the brain in HE.

Finally, we confirmed increased levels of Il-1β, Cox-2, Bmp6, and Tfr1, reduced activation 
of AKT phosphorylation, and attenuation of the Hamp1 gene in N2A cells after lipocalin-2 
treatment. To mimic hepatic lipocalin-2 from passing from the blood circulation into the 
brain, we treated N2A cells with lipocalin synthesized protein. The increased levels of IL-1β 
and Cox-2 observed in N2A cells are similar to the expression patterns of these factors in 
the brain cortex. Bmp6 is considered a neurotrophic factor [85] and negative regulator 
of neurogenesis in the brains of patients with AD [86]. One study observed high levels of 
Bmp6 in the dentate gyrus accompanied by reduced neurogenesis and excessive Aβ plaque 
accumulation [87], which are involved in memory formation and synaptic failure in patients 
with AD [88]. Moreover, the Tfr1 gene regulates iron overload and ferroptosis [89-91]. Some 
studies have illustrated that increased expression of Tfr1 attenuates neurite outgrowth 
[92], impairs iron homeostasis [93], disrupts the dopamine system [94], and contributes 
to poor motor coordination [95]. Another study reported that Tfr1 could modulate iron-
mediated immune responses through the NF-κB pathway [96]. Considering our data and 
previous reports, lipocalin-2 may reduce neurite outgrowth and dysregulate iron-dependent 
mechanisms, inflammatory responses, and cell death in neurons by increasing the 
expression of Bmp6 and Tfr1 genes.

Although there are many limitations to fully elucidating the roles of lipocalin-2 in the 
brain in HE, we can conclude several points in this study. First, HE causes elevated levels 
of lipocalin-2 both in the blood circulation and in the liver. Second, hepatic lipocalin-2 
may control inflammatory responses by regulating IL-1β secretion, pain hyperactivity by 
regulating Cox-2 expression, and iron metabolism by controlling Trf1 expression through 
AKT-mediated signaling in the brain cortex. Third, hepatic lipocalin-2 may accelerate 
inflammatory responses and cell death and dysregulate neurite outgrowth through iron-
dependent mechanisms through AKT-mediated signaling in neurons.

Thus, the modulation of lipocalin-2 signaling in the brain may be a key target for treating 
neuropathological and neuropsychiatric issues in the brain in HE. Further studies on the 
roles of lipocalin-2 both in the brain and liver in liver failure are needed to identify the critical 
mechanisms of action of lipocalin-2. We also highlighted that lipocalin-2 is a cardinal protein 
to illustrate the mechanism of the liver-brain axis in patients with HE.
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