Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1004023 and 2021R1A4A3031661).
References
- Sanyal A, Boyer T, Terrault N et al (2017) Zakim and Boyer's hepatology: a textbook of liver disease. Philadelphia, PA: Elsevier
- Koyama Y and Brenner DA (2017) Liver inflammation and fibrosis. J Clin Invest 127, 55-64 https://doi.org/10.1172/jci88881
- Lopez BG, Tsai MS, Baratta JL et al (2011) Characterization of Kupffer cells in livers of developing mice. Comp Hepatol 10, 2 https://doi.org/10.1186/1476-5926-10-2
- Chen Y and Tian Z (2021) Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 18, 57-72 https://doi.org/10.1038/s41423-020-00561-z
- Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66, 1300-1312 https://doi.org/10.1016/j.jhep.2017.02.026
- Tacke F and Zimmermann HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60, 1090-1096 https://doi.org/10.1016/j.jhep.2013.12.025
- Scott CL, Zheng F, De Baetselier P et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7, 10321 https://doi.org/10.1038/ncomms10321
- Stutchfield BM, Antoine DJ, Mackinnon AC et al (2015) CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149, 1896-1909.e1814 https://doi.org/10.1053/j.gastro.2015.08.053
- Nascimento M, Huang SC, Smith A et al (2014) Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. PLoS Pathog 10, e1004282 https://doi.org/10.1371/journal.ppat.1004282
- Zigmond E, Samia-Grinberg S, Pasmanik-Chor M et al (2014) Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 193, 344-353 https://doi.org/10.4049/jimmunol.1400574
- Krenkel O and Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17, 306-321 https://doi.org/10.1038/nri.2017.11
- Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83-87 https://doi.org/10.1126/science.1117729
- Kupffer C (1876) Ueber Sternzellen der Leber. Archiv fur mikroskopische Anatomie 12, 353-358 https://doi.org/10.1007/BF02933897
- Browicz (1899) Ueber intravasculare Zellen in den Blutcapillaren der Leberacini. Archiv fur mikroskopische Anatomie 55, 420-426 https://doi.org/10.1007/BF02977740
- van Furth R, Cohn ZA, Hirsch JG et al (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46, 845-852
- Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79-91 https://doi.org/10.1016/j.immuni.2012.12.001
- Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665-678 https://doi.org/10.1016/j.immuni.2015.03.011
- Mass E, Ballesteros I, Farlik M et al (2016) Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 https://doi.org/10.1126/science.aaf4238
- Mass E (2018) Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int Immunol 30, 493-501 https://doi.org/10.1093/intimm/dxy044
- Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547-551 https://doi.org/10.1038/nature13989
- Bertrand JY, Jalil A, Klaine M et al (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004-3011 https://doi.org/10.1182/blood-2005-02-0461
- Beattie L, Sawtell A, Mann J et al (2016) Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 65, 758-768 https://doi.org/10.1016/j.jhep.2016.05.037
- Heymann F and Tacke F (2016) Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 13, 88-110 https://doi.org/10.1038/nrgastro.2015.200
- Heymann F, Peusquens J, Ludwig-Portugall I et al (2015) Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62, 279-291 https://doi.org/10.1002/hep.27793
- Strnad P, Tacke F, Koch A et al (2017) Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 14, 55-66 https://doi.org/10.1038/nrgastro.2016.168
- Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915-927 https://doi.org/10.1016/j.cell.2005.12.039
- Zeng Z, Surewaard BG, Wong CH et al (2016) CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne Gram-positive bacteria. Cell Host Microbe 20, 99-106 https://doi.org/10.1016/j.chom.2016.06.002
- Jenne CN and Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14, 996-1006 https://doi.org/10.1038/ni.2691
- Zheng M and Tian Z (2019) Liver-mediated adaptive immune tolerance. Front Immunol 10, 2525 https://doi.org/10.3389/fimmu.2019.02525
- Baeck C, Wehr A, Karlmark KR et al (2012) Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61, 416-426 https://doi.org/10.1136/gutjnl-2011-300304
- Karlmark KR, Weiskirchen R, Zimmermann HW et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261-274 https://doi.org/10.1002/hep.22950
- Miura K, Yang L, van Rooijen N et al (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302, G1310-G1321 https://doi.org/10.1152/ajpgi.00365.2011
- Varol C, Landsman L, Fogg DK et al (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204, 171-180 https://doi.org/10.1084/jem.20061011
- Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109, 3186-3195
- Mossanen JC, Krenkel O, Ergen C et al (2016) Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64, 1667-1682 https://doi.org/10.1002/hep.28682
- David BA, Rezende RM, Antunes MM et al (2016) Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151, 1176-1191 https://doi.org/10.1053/j.gastro.2016.08.024
- Auffray C, Fogg D, Garfa M et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666-670 https://doi.org/10.1126/science.1142883
- Serbina NV and Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7, 311-317 https://doi.org/10.1038/ni1309
- Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612-616 https://doi.org/10.1126/science.1175202
- Bonnardel J, T'Jonck W, Gaublomme D et al (2019) Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638-654.e639 https://doi.org/10.1016/j.immuni.2019.08.017
- Sakai M, Troutman TD, Seidman JS et al (2019) Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655-670.e658 https://doi.org/10.1016/j.immuni.2019.09.002
- Bleriot C, Dupuis T, Jouvion G et al (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42, 145-158 https://doi.org/10.1016/j.immuni.2014.12.020
- Braga TT, Agudelo JS and Camara NO (2015) Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol 6, 602
- Gao B and Tsukamoto H (2016) Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150, 1704-1709 https://doi.org/10.1053/j.gastro.2016.01.025
- Grunhut J, Wang W, Aykut B et al (2018) Macrophages in nonalcoholic steatohepatitis: friend or foe? Eur Med J Hepatol 6, 100-109
- Duffield JS, Forbes SJ, Constandinou CM et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115, 56-65 https://doi.org/10.1172/JCI200522675
- Ritz T, Krenkel O and Tacke F (2018) Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol 330, 175-182 https://doi.org/10.1016/j.cellimm.2017.12.007
- Devisscher L, Scott CL, Lefere S et al (2017) Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 322, 74-83 https://doi.org/10.1016/j.cellimm.2017.10.006
- Lefere S, Degroote H, Van Vlierberghe H et al (2019) Unveiling the depletion of Kupffer cells in experimental hepatocarcinogenesis through liver macrophage subtype-specific markers. J Hepatol 71, 631-633 https://doi.org/10.1016/j.jhep.2019.03.016
- Tran S, Baba I, Poupel L et al (2020) Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627-640.e5 https://doi.org/10.1016/j.immuni.2020.06.003
- Ramachandran P, Dobie R, Wilson-Kanamori JR et al (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512-518 https://doi.org/10.1038/s41586-019-1631-3
- Xiong X, Kuang H, Ansari S et al (2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 75, 644-660.e5 https://doi.org/10.1016/j.molcel.2019.07.028
- Jaitin DA, Adlung L, Thaiss CA et al (2019) Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686-698.e14 https://doi.org/10.1016/j.cell.2019.05.054
- Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071 https://doi.org/10.1016/j.cell.2015.01.049
- Hou J, Zhang J, Cui P et al (2021) TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis. J Clin Invest 131, e135197 https://doi.org/10.1172/JCI135197
- Perugorria MJ, Esparza-Baquer A, Oakley F et al (2019) Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 68, 533-546 https://doi.org/10.1136/gutjnl-2017-314107
- Guillot A and Tacke F (2019) Liver macrophages: old dogmas and new insights. Hepatol Commun 3, 730-743 https://doi.org/10.1002/hep4.1356
- Wen Y, Lambrecht J, Ju C et al (2021) Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 18, 45-56 https://doi.org/10.1038/s41423-020-00558-8
- Franchi L, Eigenbrod T, Munoz-Planillo R et al (2009) The inflammasome: a caspase-1-activation platform that reguates immune responses and disease pathogenesis. Nat Immunol 10, 241-247 https://doi.org/10.1038/ni.1703
- Szabo G and Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12, 387-400 https://doi.org/10.1038/nrgastro.2015.94
- Mridha AR, Wree A, Robertson AAB et al (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66, 1037-1046 https://doi.org/10.1016/j.jhep.2017.01.022
- Zhang C, Feng J, Du J et al (2018) Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 15, 973-982 https://doi.org/10.1038/cmi.2017.22
- Melgar-Lesmes P and Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63, 917-925 https://doi.org/10.1016/j.jhep.2015.05.011
- Guo Q, Furuta K, Lucien F et al (2019) Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol 71, 1193-1205 https://doi.org/10.1016/j.jhep.2019.07.019
- Cai J, Zhang XJ and Li H (2019) The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology 70, 1026-1037 https://doi.org/10.1002/hep.30506
- Soehnlein O and Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10, 427-439 https://doi.org/10.1038/nri2779
- Sutti S, Bruzzi S, Heymann F et al (2019) CX3CR1 mediates the development of monocyte-derived dendritic cells during hepatic inflammation. Cells 8, 1099 https://doi.org/10.3390/cells8091099
- Wehr A, Baeck C, Heymann F et al (2013) Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J Immunol 190, 5226-5236 https://doi.org/10.4049/jimmunol.1202909
- Jiang Y, Tang Y, Hoover C et al (2021) Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 28, 3009-3021 https://doi.org/10.1038/s41418-021-00797-w
- Malehmir M, Pfister D, Gallage S et al (2019) Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med 25, 641-655 https://doi.org/10.1038/s41591-019-0379-5
- Seidman JS, Troutman TD, Sakai M et al (2020) Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057-1074.e7 https://doi.org/10.1016/j.immuni.2020.04.001
- Daemen S, Gainullina A, Kalugotla G et al (2021) Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 34, 108626 https://doi.org/10.1016/j.celrep.2020.108626
- Chakarov S, Lim HY, Tan L et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 https://doi.org/10.1126/science.aau0964
- Chen G, Ning B and Shi T (2019) Single-cell RNA-Seq technologies and related computational data analysis. Front Genet 10, 317 https://doi.org/10.3389/fgene.2019.00317
- Lambrecht J, van Grunsven LA and Tacke F (2020) Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 21, 1637-1650 https://doi.org/10.1080/14656566.2020.1774553
- Ju C and Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel thera-peutic strategies. Cell Mol Immunol 13, 316-327 https://doi.org/10.1038/cmi.2015.104
- van der Heide D, Weiskirchen R and Bansal R (2019) Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol 10, 2852 https://doi.org/10.3389/fimmu.2019.02852
- Krenkel O, Puengel T, Govaere O et al (2018) Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270-1283 https://doi.org/10.1002/hep.29544
- Kruger AJ, Fuchs BC, Masia R et al (2018) Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2, 529-545 https://doi.org/10.1002/hep4.1160
- Friedman SL, Ratziu V, Harrison SA et al (2018) A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67, 1754-1767 https://doi.org/10.1002/hep.29477
- Ratziu V, Sanyal A, Harrison SA et al (2020) Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology 72, 892-905 https://doi.org/10.1002/hep.31108
- Anstee QM, Neuschwander-Tetri BA, Wong VW et al (2020) Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp Clin Trials 89, 105922 https://doi.org/10.1016/j.cct.2019.105922
- Perez-Martinez L, Perez-Matute P, Aguilera-Lizarraga J et al (2014) Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). J Antimicrob Chemother 69, 1903-1910 https://doi.org/10.1093/jac/dku071
- Mulder P, van den Hoek AM and Kleemann R (2017) The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and nonalcoholic steatohepatitis. PLoS One 12, e0169740 https://doi.org/10.1371/journal.pone.0169740
- Albillos A, de Gottardi A and Rescigno M (2020) The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 72, 558-577 https://doi.org/10.1016/j.jhep.2019.10.003
- Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504-516 https://doi.org/10.1016/j.ccr.2012.02.007
- Schneider KM, Bieghs V, Heymann F et al (2015) CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology 62, 1405-1416 https://doi.org/10.1002/hep.27982
- Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13, 1324-1332 https://doi.org/10.1038/nm1663
- Carpino G, Del Ben M, Pastori D et al (2020) Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 72, 470-485 https://doi.org/10.1002/hep.31056
- Bennett RG, Simpson RL and Hamel FG (2017) Serelaxin increases the antifibrotic action of rosiglitazone in a model of hepatic fibrosis. World J Gastroenterol 23, 3999-4006 https://doi.org/10.3748/wjg.v23.i22.3999
- Weiskirchen R and Tacke F (2016) Liver fibrosis: from pathogenesis to novel therapies. Dig Dis 34, 410-422 https://doi.org/10.1159/000444556
- Loomba R, Lawitz E, Mantry PS et al (2018) The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549- 559 https://doi.org/10.1002/hep.29514
- Harrison SA, Wong VW, Okanoue T et al (2020) Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J Hepatol 73, 26-39 https://doi.org/10.1016/j.jhep.2020.02.027
- Han YH, Kim HJ, Na H et al (2017) RORα induces KLF4-mediated M2 polarization in the liver macrophages that protect against nonalcoholic steatohepatitis. Cell Rep 20, 124-135 https://doi.org/10.1016/j.celrep.2017.06.017
- Han YH, Shin KO, Kim JY et al (2019) A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. J Clin Invest 129, 1684-1698 https://doi.org/10.1172/jci124219
- Henderson NC, Mackinnon AC, Farnworth SL et al (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103, 5060-5065 https://doi.org/10.1073/pnas.0511167103
- Iacobini C, Menini S, Ricci C et al (2011) Galectin-3 ablation protects mice from diet-induced NASH: a major scavenging role for galectin-3 in liver. J Hepatol 54, 975-983 https://doi.org/10.1016/j.jhep.2010.09.020
- Chalasani N, Abdelmalek MF, Garcia-Tsao G et al (2020) Effects of Belapectin, an inhibitor of Galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158, 1334-1345.e5 https://doi.org/10.1053/j.gastro.2019.11.296
- Lefere S, Puengel T, Hundertmark J et al (2020) Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J Hepatol 73, 757-770 https://doi.org/10.1016/j.jhep.2020.04.025