DOI QR코드

DOI QR Code

Roles of heterogenous hepatic macrophages in the progression of liver diseases

  • Lee, Kyeong-Jin (Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University) ;
  • Kim, Mi-Yeon (Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University) ;
  • Han, Yong-Hyun (Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University)
  • Received : 2022.02.03
  • Accepted : 2022.03.05
  • Published : 2022.04.30

Abstract

Hepatic macrophages are key immune cells associated with the broad ranges of liver diseases including steatosis, inflammation and fibrosis. Hepatic macrophages interact with other immune cells and orchestrate hepatic immune circumstances. Recently, the heterogenous populations of hepatic macrophages have been discovered termed residential Kupffer cells and monocyte-derived macrophages, and identified their distinct population dynamics during the progression of various liver diseases. Liver injury lead to Kupffer cells activation with induction of inflammatory cytokines and chemokines, which triggers recruitment of inflammatory monocyte-derived macrophages. To understand liver pathology, the functions of different subtypes of liver macrophages should be regarded with different perspectives. In this review, we summarize recent advances in the roles of hepatic macrophages under liver damages and suggest hepatic macrophages as promising therapeutic targets for treating liver diseases.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1004023 and 2021R1A4A3031661).

References

  1. Sanyal A, Boyer T, Terrault N et al (2017) Zakim and Boyer's hepatology: a textbook of liver disease. Philadelphia, PA: Elsevier
  2. Koyama Y and Brenner DA (2017) Liver inflammation and fibrosis. J Clin Invest 127, 55-64 https://doi.org/10.1172/jci88881
  3. Lopez BG, Tsai MS, Baratta JL et al (2011) Characterization of Kupffer cells in livers of developing mice. Comp Hepatol 10, 2 https://doi.org/10.1186/1476-5926-10-2
  4. Chen Y and Tian Z (2021) Innate lymphocytes: pathogenesis and therapeutic targets of liver diseases and cancer. Cell Mol Immunol 18, 57-72 https://doi.org/10.1038/s41423-020-00561-z
  5. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66, 1300-1312 https://doi.org/10.1016/j.jhep.2017.02.026
  6. Tacke F and Zimmermann HW (2014) Macrophage heterogeneity in liver injury and fibrosis. J Hepatol 60, 1090-1096 https://doi.org/10.1016/j.jhep.2013.12.025
  7. Scott CL, Zheng F, De Baetselier P et al (2016) Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nat Commun 7, 10321 https://doi.org/10.1038/ncomms10321
  8. Stutchfield BM, Antoine DJ, Mackinnon AC et al (2015) CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology 149, 1896-1909.e1814 https://doi.org/10.1053/j.gastro.2015.08.053
  9. Nascimento M, Huang SC, Smith A et al (2014) Ly6Chi monocyte recruitment is responsible for Th2 associated host-protective macrophage accumulation in liver inflammation due to schistosomiasis. PLoS Pathog 10, e1004282 https://doi.org/10.1371/journal.ppat.1004282
  10. Zigmond E, Samia-Grinberg S, Pasmanik-Chor M et al (2014) Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol 193, 344-353 https://doi.org/10.4049/jimmunol.1400574
  11. Krenkel O and Tacke F (2017) Liver macrophages in tissue homeostasis and disease. Nat Rev Immunol 17, 306-321 https://doi.org/10.1038/nri.2017.11
  12. Fogg DK, Sibon C, Miled C et al (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83-87 https://doi.org/10.1126/science.1117729
  13. Kupffer C (1876) Ueber Sternzellen der Leber. Archiv fur mikroskopische Anatomie 12, 353-358 https://doi.org/10.1007/BF02933897
  14. Browicz (1899) Ueber intravasculare Zellen in den Blutcapillaren der Leberacini. Archiv fur mikroskopische Anatomie 55, 420-426 https://doi.org/10.1007/BF02977740
  15. van Furth R, Cohn ZA, Hirsch JG et al (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46, 845-852
  16. Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79-91 https://doi.org/10.1016/j.immuni.2012.12.001
  17. Hoeffel G, Chen J, Lavin Y et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42, 665-678 https://doi.org/10.1016/j.immuni.2015.03.011
  18. Mass E, Ballesteros I, Farlik M et al (2016) Specification of tissue-resident macrophages during organogenesis. Science 353, aaf4238 https://doi.org/10.1126/science.aaf4238
  19. Mass E (2018) Delineating the origins, developmental programs and homeostatic functions of tissue-resident macrophages. Int Immunol 30, 493-501 https://doi.org/10.1093/intimm/dxy044
  20. Gomez Perdiguero E, Klapproth K, Schulz C et al (2015) Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547-551 https://doi.org/10.1038/nature13989
  21. Bertrand JY, Jalil A, Klaine M et al (2005) Three pathways to mature macrophages in the early mouse yolk sac. Blood 106, 3004-3011 https://doi.org/10.1182/blood-2005-02-0461
  22. Beattie L, Sawtell A, Mann J et al (2016) Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. J Hepatol 65, 758-768 https://doi.org/10.1016/j.jhep.2016.05.037
  23. Heymann F and Tacke F (2016) Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 13, 88-110 https://doi.org/10.1038/nrgastro.2015.200
  24. Heymann F, Peusquens J, Ludwig-Portugall I et al (2015) Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62, 279-291 https://doi.org/10.1002/hep.27793
  25. Strnad P, Tacke F, Koch A et al (2017) Liver - guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol 14, 55-66 https://doi.org/10.1038/nrgastro.2016.168
  26. Helmy KY, Katschke KJ Jr, Gorgani NN et al (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915-927 https://doi.org/10.1016/j.cell.2005.12.039
  27. Zeng Z, Surewaard BG, Wong CH et al (2016) CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne Gram-positive bacteria. Cell Host Microbe 20, 99-106 https://doi.org/10.1016/j.chom.2016.06.002
  28. Jenne CN and Kubes P (2013) Immune surveillance by the liver. Nat Immunol 14, 996-1006 https://doi.org/10.1038/ni.2691
  29. Zheng M and Tian Z (2019) Liver-mediated adaptive immune tolerance. Front Immunol 10, 2525 https://doi.org/10.3389/fimmu.2019.02525
  30. Baeck C, Wehr A, Karlmark KR et al (2012) Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61, 416-426 https://doi.org/10.1136/gutjnl-2011-300304
  31. Karlmark KR, Weiskirchen R, Zimmermann HW et al (2009) Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261-274 https://doi.org/10.1002/hep.22950
  32. Miura K, Yang L, van Rooijen N et al (2012) Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol Gastrointest Liver Physiol 302, G1310-G1321 https://doi.org/10.1152/ajpgi.00365.2011
  33. Varol C, Landsman L, Fogg DK et al (2007) Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med 204, 171-180 https://doi.org/10.1084/jem.20061011
  34. Ramachandran P, Pellicoro A, Vernon MA et al (2012) Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci U S A 109, 3186-3195
  35. Mossanen JC, Krenkel O, Ergen C et al (2016) Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 64, 1667-1682 https://doi.org/10.1002/hep.28682
  36. David BA, Rezende RM, Antunes MM et al (2016) Combination of mass cytometry and imaging analysis reveals origin, location, and functional repopulation of liver myeloid cells in mice. Gastroenterology 151, 1176-1191 https://doi.org/10.1053/j.gastro.2016.08.024
  37. Auffray C, Fogg D, Garfa M et al (2007) Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666-670 https://doi.org/10.1126/science.1142883
  38. Serbina NV and Pamer EG (2006) Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7, 311-317 https://doi.org/10.1038/ni1309
  39. Swirski FK, Nahrendorf M, Etzrodt M et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612-616 https://doi.org/10.1126/science.1175202
  40. Bonnardel J, T'Jonck W, Gaublomme D et al (2019) Stellate cells, hepatocytes, and endothelial cells imprint the Kupffer cell identity on monocytes colonizing the liver macrophage niche. Immunity 51, 638-654.e639 https://doi.org/10.1016/j.immuni.2019.08.017
  41. Sakai M, Troutman TD, Seidman JS et al (2019) Liver-derived signals sequentially reprogram myeloid enhancers to initiate and maintain Kupffer cell identity. Immunity 51, 655-670.e658 https://doi.org/10.1016/j.immuni.2019.09.002
  42. Bleriot C, Dupuis T, Jouvion G et al (2015) Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 42, 145-158 https://doi.org/10.1016/j.immuni.2014.12.020
  43. Braga TT, Agudelo JS and Camara NO (2015) Macrophages during the fibrotic process: M2 as friend and foe. Front Immunol 6, 602
  44. Gao B and Tsukamoto H (2016) Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology 150, 1704-1709 https://doi.org/10.1053/j.gastro.2016.01.025
  45. Grunhut J, Wang W, Aykut B et al (2018) Macrophages in nonalcoholic steatohepatitis: friend or foe? Eur Med J Hepatol 6, 100-109
  46. Duffield JS, Forbes SJ, Constandinou CM et al (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115, 56-65 https://doi.org/10.1172/JCI200522675
  47. Ritz T, Krenkel O and Tacke F (2018) Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol 330, 175-182 https://doi.org/10.1016/j.cellimm.2017.12.007
  48. Devisscher L, Scott CL, Lefere S et al (2017) Non-alcoholic steatohepatitis induces transient changes within the liver macrophage pool. Cell Immunol 322, 74-83 https://doi.org/10.1016/j.cellimm.2017.10.006
  49. Lefere S, Degroote H, Van Vlierberghe H et al (2019) Unveiling the depletion of Kupffer cells in experimental hepatocarcinogenesis through liver macrophage subtype-specific markers. J Hepatol 71, 631-633 https://doi.org/10.1016/j.jhep.2019.03.016
  50. Tran S, Baba I, Poupel L et al (2020) Impaired Kupffer cell self-renewal alters the liver response to lipid overload during non-alcoholic steatohepatitis. Immunity 53, 627-640.e5 https://doi.org/10.1016/j.immuni.2020.06.003
  51. Ramachandran P, Dobie R, Wilson-Kanamori JR et al (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512-518 https://doi.org/10.1038/s41586-019-1631-3
  52. Xiong X, Kuang H, Ansari S et al (2019) Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 75, 644-660.e5 https://doi.org/10.1016/j.molcel.2019.07.028
  53. Jaitin DA, Adlung L, Thaiss CA et al (2019) Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686-698.e14 https://doi.org/10.1016/j.cell.2019.05.054
  54. Wang Y, Cella M, Mallinson K et al (2015) TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell 160, 1061-1071 https://doi.org/10.1016/j.cell.2015.01.049
  55. Hou J, Zhang J, Cui P et al (2021) TREM2 sustains macrophage-hepatocyte metabolic coordination in nonalcoholic fatty liver disease and sepsis. J Clin Invest 131, e135197 https://doi.org/10.1172/JCI135197
  56. Perugorria MJ, Esparza-Baquer A, Oakley F et al (2019) Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 68, 533-546 https://doi.org/10.1136/gutjnl-2017-314107
  57. Guillot A and Tacke F (2019) Liver macrophages: old dogmas and new insights. Hepatol Commun 3, 730-743 https://doi.org/10.1002/hep4.1356
  58. Wen Y, Lambrecht J, Ju C et al (2021) Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 18, 45-56 https://doi.org/10.1038/s41423-020-00558-8
  59. Franchi L, Eigenbrod T, Munoz-Planillo R et al (2009) The inflammasome: a caspase-1-activation platform that reguates immune responses and disease pathogenesis. Nat Immunol 10, 241-247 https://doi.org/10.1038/ni.1703
  60. Szabo G and Petrasek J (2015) Inflammasome activation and function in liver disease. Nat Rev Gastroenterol Hepatol 12, 387-400 https://doi.org/10.1038/nrgastro.2015.94
  61. Mridha AR, Wree A, Robertson AAB et al (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66, 1037-1046 https://doi.org/10.1016/j.jhep.2017.01.022
  62. Zhang C, Feng J, Du J et al (2018) Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol 15, 973-982 https://doi.org/10.1038/cmi.2017.22
  63. Melgar-Lesmes P and Edelman ER (2015) Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 63, 917-925 https://doi.org/10.1016/j.jhep.2015.05.011
  64. Guo Q, Furuta K, Lucien F et al (2019) Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. J Hepatol 71, 1193-1205 https://doi.org/10.1016/j.jhep.2019.07.019
  65. Cai J, Zhang XJ and Li H (2019) The role of innate immune cells in nonalcoholic steatohepatitis. Hepatology 70, 1026-1037 https://doi.org/10.1002/hep.30506
  66. Soehnlein O and Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10, 427-439 https://doi.org/10.1038/nri2779
  67. Sutti S, Bruzzi S, Heymann F et al (2019) CX3CR1 mediates the development of monocyte-derived dendritic cells during hepatic inflammation. Cells 8, 1099 https://doi.org/10.3390/cells8091099
  68. Wehr A, Baeck C, Heymann F et al (2013) Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J Immunol 190, 5226-5236 https://doi.org/10.4049/jimmunol.1202909
  69. Jiang Y, Tang Y, Hoover C et al (2021) Kupffer cell receptor CLEC4F is important for the destruction of desialylated platelets in mice. Cell Death Differ 28, 3009-3021 https://doi.org/10.1038/s41418-021-00797-w
  70. Malehmir M, Pfister D, Gallage S et al (2019) Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat Med 25, 641-655 https://doi.org/10.1038/s41591-019-0379-5
  71. Seidman JS, Troutman TD, Sakai M et al (2020) Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 52, 1057-1074.e7 https://doi.org/10.1016/j.immuni.2020.04.001
  72. Daemen S, Gainullina A, Kalugotla G et al (2021) Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 34, 108626 https://doi.org/10.1016/j.celrep.2020.108626
  73. Chakarov S, Lim HY, Tan L et al (2019) Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363, eaau0964 https://doi.org/10.1126/science.aau0964
  74. Chen G, Ning B and Shi T (2019) Single-cell RNA-Seq technologies and related computational data analysis. Front Genet 10, 317 https://doi.org/10.3389/fgene.2019.00317
  75. Lambrecht J, van Grunsven LA and Tacke F (2020) Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 21, 1637-1650 https://doi.org/10.1080/14656566.2020.1774553
  76. Ju C and Tacke F (2016) Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel thera-peutic strategies. Cell Mol Immunol 13, 316-327 https://doi.org/10.1038/cmi.2015.104
  77. van der Heide D, Weiskirchen R and Bansal R (2019) Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol 10, 2852 https://doi.org/10.3389/fimmu.2019.02852
  78. Krenkel O, Puengel T, Govaere O et al (2018) Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 67, 1270-1283 https://doi.org/10.1002/hep.29544
  79. Kruger AJ, Fuchs BC, Masia R et al (2018) Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2, 529-545 https://doi.org/10.1002/hep4.1160
  80. Friedman SL, Ratziu V, Harrison SA et al (2018) A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. Hepatology 67, 1754-1767 https://doi.org/10.1002/hep.29477
  81. Ratziu V, Sanyal A, Harrison SA et al (2020) Cenicriviroc treatment for adults with nonalcoholic steatohepatitis and fibrosis: final analysis of the phase 2b CENTAUR study. Hepatology 72, 892-905 https://doi.org/10.1002/hep.31108
  82. Anstee QM, Neuschwander-Tetri BA, Wong VW et al (2020) Cenicriviroc for the treatment of liver fibrosis in adults with nonalcoholic steatohepatitis: AURORA Phase 3 study design. Contemp Clin Trials 89, 105922 https://doi.org/10.1016/j.cct.2019.105922
  83. Perez-Martinez L, Perez-Matute P, Aguilera-Lizarraga J et al (2014) Maraviroc, a CCR5 antagonist, ameliorates the development of hepatic steatosis in a mouse model of non-alcoholic fatty liver disease (NAFLD). J Antimicrob Chemother 69, 1903-1910 https://doi.org/10.1093/jac/dku071
  84. Mulder P, van den Hoek AM and Kleemann R (2017) The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and nonalcoholic steatohepatitis. PLoS One 12, e0169740 https://doi.org/10.1371/journal.pone.0169740
  85. Albillos A, de Gottardi A and Rescigno M (2020) The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 72, 558-577 https://doi.org/10.1016/j.jhep.2019.10.003
  86. Dapito DH, Mencin A, Gwak GY et al (2012) Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504-516 https://doi.org/10.1016/j.ccr.2012.02.007
  87. Schneider KM, Bieghs V, Heymann F et al (2015) CX3CR1 is a gatekeeper for intestinal barrier integrity in mice: Limiting steatohepatitis by maintaining intestinal homeostasis. Hepatology 62, 1405-1416 https://doi.org/10.1002/hep.27982
  88. Seki E, De Minicis S, Osterreicher CH et al (2007) TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med 13, 1324-1332 https://doi.org/10.1038/nm1663
  89. Carpino G, Del Ben M, Pastori D et al (2020) Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 72, 470-485 https://doi.org/10.1002/hep.31056
  90. Bennett RG, Simpson RL and Hamel FG (2017) Serelaxin increases the antifibrotic action of rosiglitazone in a model of hepatic fibrosis. World J Gastroenterol 23, 3999-4006 https://doi.org/10.3748/wjg.v23.i22.3999
  91. Weiskirchen R and Tacke F (2016) Liver fibrosis: from pathogenesis to novel therapies. Dig Dis 34, 410-422 https://doi.org/10.1159/000444556
  92. Loomba R, Lawitz E, Mantry PS et al (2018) The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67, 549- 559 https://doi.org/10.1002/hep.29514
  93. Harrison SA, Wong VW, Okanoue T et al (2020) Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J Hepatol 73, 26-39 https://doi.org/10.1016/j.jhep.2020.02.027
  94. Han YH, Kim HJ, Na H et al (2017) RORα induces KLF4-mediated M2 polarization in the liver macrophages that protect against nonalcoholic steatohepatitis. Cell Rep 20, 124-135 https://doi.org/10.1016/j.celrep.2017.06.017
  95. Han YH, Shin KO, Kim JY et al (2019) A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis. J Clin Invest 129, 1684-1698 https://doi.org/10.1172/jci124219
  96. Henderson NC, Mackinnon AC, Farnworth SL et al (2006) Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 103, 5060-5065 https://doi.org/10.1073/pnas.0511167103
  97. Iacobini C, Menini S, Ricci C et al (2011) Galectin-3 ablation protects mice from diet-induced NASH: a major scavenging role for galectin-3 in liver. J Hepatol 54, 975-983 https://doi.org/10.1016/j.jhep.2010.09.020
  98. Chalasani N, Abdelmalek MF, Garcia-Tsao G et al (2020) Effects of Belapectin, an inhibitor of Galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 158, 1334-1345.e5 https://doi.org/10.1053/j.gastro.2019.11.296
  99. Lefere S, Puengel T, Hundertmark J et al (2020) Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J Hepatol 73, 757-770 https://doi.org/10.1016/j.jhep.2020.04.025