Acknowledgement
This work was supported by grants from the NRF (2020R1A5A1019023 and 2021R1A2C2008023 to M.J.L.), the Korea Health Industry Development Institute and Korea Dementia Research Center (HU21C0071 to M.J.L.), and the Creative-Pioneering Researchers Program through Seoul National University, and the BK21 FOUR programs (W.H.C. and S.H.P.).
References
- Saxton RA and Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976 https://doi.org/10.1016/j.cell.2017.02.004
- Kim J and Guan KL (2019) mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol 21, 63-71 https://doi.org/10.1038/s41556-018-0205-1
- Laplante M and Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149, 274-293 https://doi.org/10.1016/j.cell.2012.03.017
- Inoki K, Corradetti MN and Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37, 19-24 https://doi.org/10.1038/ng1494
- Liu GY and Sabatini DM (2020) mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21, 183-203 https://doi.org/10.1038/s41580-019-0199-y
- Jung CH, Ro SH, Cao J, Otto NM and Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584, 1287-1295 https://doi.org/10.1016/j.febslet.2010.01.017
- Chantranupong L, Wolfson RL and Sabatini DM (2015) Nutrient-sensing mechanisms across evolution. Cell 161, 67-83 https://doi.org/10.1016/j.cell.2015.02.041
- Vabulas RM and Hartl FU (2005) Protein synthesis upon acute nutrient restriction relies on proteasome function. Science 310, 1960-1963 https://doi.org/10.1126/science.1121925
- Takeshige K, Baba M, Tsuboi S, Noda T and Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinasdeficient mutants and conditions for its induction. J Cell Biol 119, 301-311 https://doi.org/10.1083/jcb.119.2.301
- Milani M, Rzymski T, Mellor HR et al (2009) The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res 69, 4415-4423 https://doi.org/10.1158/0008-5472.CAN-08-2839
- Ding WX, Ni HM, Gao W et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171, 513-524 https://doi.org/10.2353/ajpath.2007.070188
- Zhu K, Dunner K Jr and McConkey DJ (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451-462 https://doi.org/10.1038/onc.2009.343
- Kim E, Park S, Lee JH et al (2018) Dual function of USP14 deubiquitinase in cellular proteasomal activity and autophagic flux. Cell Rep 24, 732-743 https://doi.org/10.1016/j.celrep.2018.06.058
- Lee JH, Park S, Kim E and Lee MJ (2019) Negative-feedback coordination between proteasomal activity and autophagic flux. Autophagy 15, 726-728 https://doi.org/10.1080/15548627.2019.1569917
- Kim J, Kundu M, Viollet B and Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13, 132-141 https://doi.org/10.1038/ncb2152
- Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456-461 https://doi.org/10.1126/science.1196371
- Klionsky DJ, Abdel-Aziz AK, Abdelfatah S et al (2021) Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17, 1-382 https://doi.org/10.1080/15548627.2020.1797280
- Codogno P and Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12 Suppl 2, 1509-1518 https://doi.org/10.1038/sj.cdd.4401751
- Abraham RT and Wiederrecht GJ (1996) Immunopharmacology of rapamycin. Annu Rev Immunol 14, 483-510 https://doi.org/10.1146/annurev.immunol.14.1.483
- Thoreen CC, Kang SA, Chang JW et al (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284, 8023-8032 https://doi.org/10.1074/jbc.M900301200
- Zhang Y, Nicholatos J, Dreier JR et al (2014) Coordinated regulation of protein synthesis and degradation by mTORC1. Nature 513, 440-443 https://doi.org/10.1038/nature13492
- Zhao J, Zhai B, Gygi SP and Goldberg AL (2015) mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc Natl Acad Sci U S A 112, 15790-15797 https://doi.org/10.1073/pnas.1521919112
- Appenzeller-Herzog C and Hall MN (2012) Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol 22, 274-282 https://doi.org/10.1016/j.tcb.2012.02.006
- Hamazaki J and Murata S (2020) ER-resident transcription factor nrf1 regulates proteasome expression and beyond. Int J Mol Sci 21, 3683 https://doi.org/10.3390/ijms21103683
- Sha Z and Goldberg AL (2014) Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol 24, 1573-1583 https://doi.org/10.1016/j.cub.2014.06.004
- Zhang Y and Manning BD (2016) Zhang & Manning reply. Nature 529, 2-3
- Zhao J, Garcia GA and Goldberg AL (2016) Control of proteasomal proteolysis by mTOR. Nature 529, E1-E2 https://doi.org/10.1038/nature16472
- Lokireddy S, Kukushkin NV and Goldberg AL (2015) cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc Natl Acad Sci U S A 112, 7176-7185
- VerPlank JJS, Lokireddy S, Zhao J and Goldberg AL (2019) 26S proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc Natl Acad Sci U S A 116, 4228-4237 https://doi.org/10.1073/pnas.1809254116
- Rousseau A and Bertolotti A (2016) An evolutionarily conserved pathway controls proteasome homeostasis. Nature 536, 184-189 https://doi.org/10.1038/nature18943
- Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A and Bertolotti A (2014) An inducible chaperone adapts proteasome assembly to stress. Mol Cell 55, 566-577 https://doi.org/10.1016/j.molcel.2014.06.017
- Han DH, Na HK, Choi WH et al (2014) Direct cellular delivery of human proteasomes to delay tau aggregation. Nat Commun 5, 5633 https://doi.org/10.1038/ncomms6633
- Choi WH, de Poot SA, Lee JH et al (2016) Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat Commun 7, 10963 https://doi.org/10.1038/ncomms10963
- Shin SK, Kim JH, Lee JH et al (2017) Docosahexaenoic acid-mediated protein aggregates may reduce proteasome activity and delay myotube degradation during muscle atrophy in vitro. Exp Mol Med 49, e287 https://doi.org/10.1038/emm.2016.133
- Asano S, Fukuda Y, Beck F et al (2015) Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science 347, 439-442 https://doi.org/10.1126/science.1261197
- Pack CG, Yukii H, Toh-e A et al (2014) Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun 5, 3396 https://doi.org/10.1038/ncomms4396
- Tanaka K and Ichihara A (1989) Half-life of proteasomes (multiprotease complexes) in rat liver. Biochem Biophys Res Commun 159, 1309-1315 https://doi.org/10.1016/0006-291X(89)92253-5
- Russell SJ, Steger KA and Johnston SA (1999) Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem 274, 21943-21952 https://doi.org/10.1074/jbc.274.31.21943
- Peters LZ, Hazan R, Breker M, Schuldiner M and Ben-Aroya S (2013) Formation and dissociation of proteasome storage granules are regulated by cytosolic pH. J Cell Biol 201, 663-671 https://doi.org/10.1083/jcb.201211146
- Yasuda S, Tsuchiya H, Kaiho A et al (2020) Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature 578, 296-300 https://doi.org/10.1038/s41586-020-1982-9
- Choi WH, Yun Y, Park S et al (2020) Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes. Proc Natl Acad Sci U S A 117, 19190-19200 https://doi.org/10.1073/pnas.1920327117