• 제목/요약/키워드: Live Cell Imaging

검색결과 43건 처리시간 0.022초

Imaging Single-mRNA Localization and Translation in Live Neurons

  • Lee, Byung Hun;Bae, Seong-Woo;Shim, Jaeyoun Jay;Park, Sung Young;Park, Hye Yoon
    • Molecules and Cells
    • /
    • 제39권12호
    • /
    • pp.841-846
    • /
    • 2016
  • Local protein synthesis mediates precise spatio-temporal regulation of gene expression for neuronal functions such as long-term plasticity, axon guidance and regeneration. To reveal the underlying mechanisms of local translation, it is crucial to understand mRNA transport, localization and translation in live neurons. Among various techniques for mRNA analysis, fluorescence microscopy has been widely used as the most direct method to study localization of mRNA. Live-cell imaging of single RNA molecules is particularly advantageous to dissect the highly heterogeneous and dynamic nature of messenger ribonucleoprotein (mRNP) complexes in neurons. Here, we review recent advances in the study of mRNA localization and translation in live neurons using novel techniques for single-RNA imaging.

Adult stem cell lineage tracing and deep tissue imaging

  • Fink, Juergen;Andersson-Rolf, Amanda;Koo, Bon-Kyoung
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.655-667
    • /
    • 2015
  • Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging.

Time-Lapse Live-Cell Imaging Reveals Dual Function of Oseg4, Drosophila WDR35, in Ciliary Protein Trafficking

  • Lee, Nayoung;Park, Jina;Bae, Yong Chul;Lee, Jung Ho;Kim, Chul Hoon;Moon, Seok Jun
    • Molecules and Cells
    • /
    • 제41권7호
    • /
    • pp.676-683
    • /
    • 2018
  • Cilia are highly specialized antennae-like organelles that extend from the cell surface and act as cell signaling hubs. Intraflagellar transport (IFT) is a specialized form of intracellular protein trafficking that is required for the assembly and maintenance of cilia. Because cilia are so important, mutations in several IFT components lead to human disease. Thus, clarifying the molecular functions of the IFT proteins is a high priority in cilia biology. Live imaging in various species and cellular preparations has proven to be an important technique in both the discovery of IFT and the mechanisms by which it functions. Live imaging of Drosophila cilia, however, has not yet been reported. Here, we have visualized the movement of IFT in Drosophila cilia using time-lapse live imaging for the first time. We found that NOMPB-GFP (IFT88) moves according to distinct parameters depending on the ciliary segment. NOMPB-GFP moves at a similar speed in proximal and distal cilia toward the tip (${\sim}0.45{\mu}m/s$). As it returns to the ciliary base, however, NOMPB-GFP moves at ${\sim}0.12{\mu}m/s$ in distal cilia, accelerating to ${\sim}0.70{\mu}m/s$ in proximal cilia. Furthermore, while live imaging NOMPB-GFP, we observed one of the IFT proteins required for retrograde movement, Oseg4 (WDR35), is also required for anterograde movement in distal cilia. We anticipate our time-lapse live imaging analysis technique in Drosophila cilia will be a good starting point for a more sophisticated analysis of IFT and its molecular mechanisms.

Visualization of Gene Transfer into Live Cells Using Fluorescent Semiconductor Nanocrystals

  • 김중경;임선희;이용구;신영식;정찬일;장준근;유정열
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.81-82
    • /
    • 2003
  • We have developed the method for the conjugation of biotinylated DNA to streptavidin-coated QDs. QD-DNA conjugates and a high-sensitive fluorescence imaging technique are adopted to visualize gene transport across the membrane of the live cell in real time. Endocytotic cellular uptake of oligonucleotide and electrically-mediated plasmid DNA transfer into the live cell are monitored by a quantitative microscopic imaging system. Long-term kinetic study enables us to reveal the unknown mechanisms and rate-limiting steps of extracellular and intracellular transport of biomolecules. We designed experimental protocols to conjugate the oligonucleotide or the plasmid DNA to commercially available streptavidin-coated QDs. Gel electrophoresis is used to verify the effect of incubation time and the molar ratio of QDs and DNA on the conjugation efficiency. It is possible to fractionate the QD-DNA conjugates according to the DNA concentration and obtain the purified conjugates by a gel extraction technique.

  • PDF

Visualization of chromatin higher-order structures and dynamics in live cells

  • Park, Tae Lim;Lee, YigJi;Cho, Won-Ki
    • BMB Reports
    • /
    • 제54권10호
    • /
    • pp.489-496
    • /
    • 2021
  • Chromatin has highly organized structures in the nucleus, and these higher-order structures are proposed to regulate gene activities and cellular processes. Sequencing-based techniques, such as Hi-C, and fluorescent in situ hybridization (FISH) have revealed a spatial segregation of active and inactive compartments of chromatin, as well as the non-random positioning of chromosomes in the nucleus, respectively. However, regardless of their efficiency in capturing target genomic sites, these techniques are limited to fixed cells. Since chromatin has dynamic structures, live cell imaging techniques are highlighted for their ability to detect conformational changes in chromatin at a specific time point, or to track various arrangements of chromatin through long-term imaging. Given that the imaging approaches to study live cells are dramatically advanced, we recapitulate methods that are widely used to visualize the dynamics of higher-order chromatin structures.

In vivo molecular and single cell imaging

  • Hong, Seongje;Rhee, Siyeon;Jung, Kyung Oh
    • BMB Reports
    • /
    • 제55권6호
    • /
    • pp.267-274
    • /
    • 2022
  • Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.

5-Hydroxytryptamine 6 Receptor (5-HT6R)-Mediated Morphological Changes via RhoA-Dependent Pathways

  • Rahman, Md. Ataur;Kim, Hanna;Lee, Kang Ho;Yun, Hyung-Mun;Hong, Jung-Hwa;Kim, Youngjae;Choo, Hyunah;Park, Mikyoung;Rhim, Hyewhon
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.495-502
    • /
    • 2017
  • The $5-HT_6R$ has been considered as an attractive therapeutic target in the brain due to its exclusive expression in the brain. However, the mechanistic linkage between $5-HT_6Rs$ and brain functions remains poorly understood. Here, we examined the effects of $5-HT_6R$-mediated cell morphological changes using immunocytochemistry, Western blot, and live-cell imaging assays. Our results showed that the activation of $5-HT_6Rs$ caused morphological changes and increased cell surface area in HEK293 cells expressing $5-HT_6Rs$. Treatment with 5-HT specifically increased RhoA-GTP activity without affecting other Rho family proteins, such as Rac1 and Cdc42. Furthermore, live-cell imaging in hippocampal neurons revealed that activation of $5-HT_6Rs$ using a selective agonist, ST1936, increased the density and size of dendritic protrusions along with the activation of RhoA-GTP activity and that both effects were blocked by pretreatment with a selective $5-HT_6R$ antagonist, SB258585. Taken together, our results show that $5-HT_6R$ plays an important role in the regulation of cell morphology via a RhoA-dependent pathway in mammalian cell lines and primary neurons.

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Edward, Roy
    • Molecules and Cells
    • /
    • 제27권4호
    • /
    • pp.391-396
    • /
    • 2009
  • Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.