DOI QR코드

DOI QR Code

Time-Lapse Live-Cell Imaging Reveals Dual Function of Oseg4, Drosophila WDR35, in Ciliary Protein Trafficking

  • Lee, Nayoung (Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry) ;
  • Park, Jina (Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry) ;
  • Bae, Yong Chul (Department of Oral Anatomy and Neurobiology, BK21, School of Dentistry, Kyungpook National University) ;
  • Lee, Jung Ho (Department of Pharmacology, Yonsei University College of Medicine) ;
  • Kim, Chul Hoon (Department of Pharmacology, Yonsei University College of Medicine) ;
  • Moon, Seok Jun (Department of Oral Biology, BK21 PLUS, Yonsei University College of Dentistry)
  • Received : 2018.04.02
  • Accepted : 2018.06.04
  • Published : 2018.07.31

Abstract

Cilia are highly specialized antennae-like organelles that extend from the cell surface and act as cell signaling hubs. Intraflagellar transport (IFT) is a specialized form of intracellular protein trafficking that is required for the assembly and maintenance of cilia. Because cilia are so important, mutations in several IFT components lead to human disease. Thus, clarifying the molecular functions of the IFT proteins is a high priority in cilia biology. Live imaging in various species and cellular preparations has proven to be an important technique in both the discovery of IFT and the mechanisms by which it functions. Live imaging of Drosophila cilia, however, has not yet been reported. Here, we have visualized the movement of IFT in Drosophila cilia using time-lapse live imaging for the first time. We found that NOMPB-GFP (IFT88) moves according to distinct parameters depending on the ciliary segment. NOMPB-GFP moves at a similar speed in proximal and distal cilia toward the tip (${\sim}0.45{\mu}m/s$). As it returns to the ciliary base, however, NOMPB-GFP moves at ${\sim}0.12{\mu}m/s$ in distal cilia, accelerating to ${\sim}0.70{\mu}m/s$ in proximal cilia. Furthermore, while live imaging NOMPB-GFP, we observed one of the IFT proteins required for retrograde movement, Oseg4 (WDR35), is also required for anterograde movement in distal cilia. We anticipate our time-lapse live imaging analysis technique in Drosophila cilia will be a good starting point for a more sophisticated analysis of IFT and its molecular mechanisms.

Keywords

References

  1. Avidor-Reiss, T., Maer, A.M., Koundakjian, E., Polyanovsky, A., Keil, T., Subramaniam, S., and Zuker, C.S. (2004). Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527-539. https://doi.org/10.1016/S0092-8674(04)00412-X
  2. Berbari, N.F., O'Connor, A.K., Haycraft, C.J., and Yoder, B.K. (2009). The primary cilium as a complex signaling center. Curr. Biol. 19, R526-535. https://doi.org/10.1016/j.cub.2009.05.025
  3. Buisson, J., Chenouard, N., Lagache, T., Blisnick, T., Olivo-Marin, J.C., and Bastin, P. (2013). Intraflagellar transport proteins cycle between the flagellum and its base. J. Cell Sci. 126, 327-338. https://doi.org/10.1242/jcs.117069
  4. Cole, D.G., Diener, D.R., Himelblau, A.L., Beech, P.L., Fuster, J.C., and Rosenbaum, J.L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993-1008. https://doi.org/10.1083/jcb.141.4.993
  5. Eberl, D.F., Hardy, R.W., and Kernan, M.J. (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. J. Neurosci. 20, 5981-5988. https://doi.org/10.1523/JNEUROSCI.20-16-05981.2000
  6. Engel, B.D., Ludington, W.B., and Marshall, W.F. (2009). Intraflagellar transport particle size scales inversely with flagellar length: revisiting the balance-point length control model. J. Cell Biol. 187, 81-89. https://doi.org/10.1083/jcb.200812084
  7. Follit, J.A., Tuft, R.A., Fogarty, K.E., and Pazour, G.J. (2006). The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol. Biol. Cell 17, 3781-3792. https://doi.org/10.1091/mbc.e06-02-0133
  8. Fu, W., Wang, L., Kim, S., Li, J., and Dynlacht, B.D. (2016). Role for the IFT-A Complex in Selective Transport to the Primary Cilium. Cell Rep. 17, 1505-1517. https://doi.org/10.1016/j.celrep.2016.10.018
  9. Goldstein, L.S., and Gunawardena, S. (2000). Flying through the drosophila cytoskeletal genome. J. Cell Biol. 150, F63-68. https://doi.org/10.1083/jcb.150.2.F63
  10. Gong, W.J., and Golic, K.G. (2003). Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2556-2561. https://doi.org/10.1073/pnas.0535280100
  11. Gopfert, M.C., and Robert, D. (2001). Biomechanics. Turning the key on Drosophila audition. Nature 411, 908. https://doi.org/10.1038/35082144
  12. Green, J.S., Parfrey, P.S., Harnett, J.D., Farid, N.R., Cramer, B.C., Johnson, G., Heath, O., McManamon, P.J., O'Leary, E., and Pryse-Phillips, W. (1989). The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl. J. Med. 321, 1002-1009. https://doi.org/10.1056/NEJM198910123211503
  13. Hong, S.R., Wang, C.L., Huang, Y.S., Chang, Y.C., Chang, Y.C., Pusapati, G.V., Lin, C.Y., Hsu, N., Cheng, H.C., Chiang, Y.C., et al. (2018). Spatiotemporal manipulation of ciliary glutamylation reveals its roles in intraciliary trafficking and Hedgehog signaling. Nature Commun. 9, 1732. https://doi.org/10.1038/s41467-018-03952-z
  14. Iomini, C., Babaev-Khaimov, V., Sassaroli, M., and Piperno, G. (2001). Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four phases. J. Cell Biol. 153, 13-24. https://doi.org/10.1083/jcb.153.1.13
  15. Ishikawa, H., and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
  16. Jekely, G., and Arendt, D. (2006). Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191-198. https://doi.org/10.1002/bies.20369
  17. Jeong, Y.T., Oh, S.M., Shim, J., Seo, J.T., Kwon, J.Y., and Moon, S.J. (2016). Mechanosensory neurons control sweet sensing in Drosophila. Nat. Commun. 7, 12872. https://doi.org/10.1038/ncomms12872
  18. Lechtreck, K.F., Johnson, E.C., Sakai, T., Cochran, D., Ballif, B.A., Rush, J., Pazour, G.J., Ikebe, M., and Witman, G.B. (2009). The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117-1132. https://doi.org/10.1083/jcb.200909183
  19. Lee, E., Sivan-Loukianova, E., Eberl, D.F., and Kernan, M.J. (2008). An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr. Biol. 18, 1899-1906. https://doi.org/10.1016/j.cub.2008.11.020
  20. Liem, K.F., Ashe, A., He, M., Satir, P., Moran, J., Beier, D., Wicking, C., and Anderson, K.V. (2012). The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell Biol. 197, 789-800. https://doi.org/10.1083/jcb.201110049
  21. Liu, Q., Zhou, J., Daiger, S.P., Farber, D.B., Heckenlively, J.R., Smith, J.E., Sullivan, L.S., Zuo, J., Milam, A.H., and Pierce, E.A. (2002). Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors. Invest Ophthalmol. Vis. Sci. 43, 22-32.
  22. Mangeol, P., Prevo, B., and Peterman, E.J. (2016). KymographClear and KymographDirect: two tools for the automated quantitative analysis of molecular and cellular dynamics using kymographs. Mol. Biol. Cell 27, 1948-1957. https://doi.org/10.1091/mbc.e15-06-0404
  23. Moulins, M. (1976). Ultrastructure of chordotonal organs. Structure and function of proprioceptors in the invertebrates. Chapman and Hall, London, 387-426.
  24. Ocbina, P.J.R., Eggenschwiler, J.T., Moskowitz, I., and Anderson, K.V. (2011). Complex interactions between genes controlling trafficking in primary cilia. Nat. Genet. 43, 547. https://doi.org/10.1038/ng.832
  25. Ou, G., Blacque, O.E., Snow, J.J., Leroux, M.R., and Scholey, J.M. (2005). Functional coordination of intraflagellar transport motors. Nature 436, 583-587. https://doi.org/10.1038/nature03818
  26. Pan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O.E., Endres, N.F., Tao, L., Mogilner, A., Leroux, M.R., Vale, R.D., and Scholey, J.M. (2006). Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174, 1035-1045. https://doi.org/10.1083/jcb.200606003
  27. Park, J., Lee, J., Shim, J., Han, W., Lee, J., Bae, Y.C., Chung, Y.D., Kim, C.H., and Moon, S.J. (2013). dTULP, the Drosophila melanogaster homolog of tubby, regulates transient receptor potential channel localization in cilia. PLoS Genet. 9, e1003814. https://doi.org/10.1371/journal.pgen.1003814
  28. Pazour, G.J., Wilkerson, C.G., and Witman, G.B. (1998). A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979-992. https://doi.org/10.1083/jcb.141.4.979
  29. Pazour, G.J., Dickert, B.L., Vucica, Y., Seeley, E.S., Rosenbaum, J.L., Witman, G.B., and Cole, D.G. (2000). Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709-718. https://doi.org/10.1083/jcb.151.3.709
  30. Pfister, K.K., Shah, P.R., Hummerich, H., Russ, A., Cotton, J., Annuar, A.A., King, S.M., and Fisher, E.M. (2006). Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet. 2, e1. https://doi.org/10.1371/journal.pgen.0020001
  31. Qin, J., Lin, Y., Norman, R.X., Ko, H.W., and Eggenschwiler, J.T. (2011). Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. USA 108, 1456-1461. https://doi.org/10.1073/pnas.1011410108
  32. Scholey, J.M. (2013). Kinesin-2: a family of heterotrimeric and homodimeric motors with diverse intracellular transport functions. Annu. Rev. Cell Dev. Biol. 29, 443-469. https://doi.org/10.1146/annurev-cellbio-101512-122335
  33. Scholey, J.M., and Anderson, K.V. (2006). Intraflagellar transport and cilium-based signaling. Cell 125, 439-442. https://doi.org/10.1016/j.cell.2006.04.013
  34. Singla, V., and Reiter, J.F. (2006). The primary cilium as the cell's antenna: signaling at a sensory organelle. Science 313, 629-633. https://doi.org/10.1126/science.1124534
  35. Snow, J.J., Ou, G., Gunnarson, A.L., Walker, M.R., Zhou, H.M., Brust-Mascher, I., and Scholey, J.M. (2004). Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109-1113. https://doi.org/10.1038/ncb1186
  36. Tran, P.V., Haycraft, C.J., Besschetnova, T.Y., Turbe-Doan, A., Stottmann, R.W., Herron, B.J., Chesebro, A.L., Qiu, H., Scherz, P.J., Shah, J.V., et al. (2008). THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 40, 403-410. https://doi.org/10.1038/ng.105
  37. Uga, S., and Kuwabara, M. (1965). On the Fine Structure of the Chordotonal Sensillum in Antenna of Drosophila melanogaster. J. Electron Microscopy 14, 173-181.
  38. Valente, E.M., Silhavy, J.L., Brancati, F., Barrano, G., Krishnaswami, S.R., Castori, M., Lancaster, M.A., Boltshauser, E., Boccone, L., Al-Gazali, L., et al. (2006). Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623-625. https://doi.org/10.1038/ng1805
  39. Wickstead, B., and Gull, K. (2007). Dyneins across eukaryotes: a comparative genomic analysis. Traffic (Copenhagen, Denmark) 8, 1708-1721. https://doi.org/10.1111/j.1600-0854.2007.00646.x
  40. Williams, C.L., McIntyre, J.C., Norris, S.R., Jenkins, P.M., Zhang, L., Pei, Q., Verhey, K., and Martens, J.R. (2014). Direct evidence for BBSome-associated intraflagellar transport reveals distinct properties of native mammalian cilia. Nat. Commun. 5, 5813. https://doi.org/10.1038/ncomms6813

Cited by

  1. Sub-Ciliary Segregation of Two Drosophila Transient Receptor Potential Channels Begins at the Initial Stage of Their Pre-Ciliary Trafficking vol.43, pp.12, 2018, https://doi.org/10.14348/molcells.2020.0205