DOI QR코드

DOI QR Code

Telomerase Reverse Transcriptase Contains a BH3-Like Motif and Interacts with BCL-2 Family Members

  • Jin, Young (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • You, Long (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Hye Jeong (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Lee, Han-Woong (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2018.05.13
  • Accepted : 2018.05.21
  • Published : 2018.07.31

Abstract

Upregulation of human telomerase reverse transcriptase (hTERT) expression is an important factor in the cellular survival and cancer. Although growing evidence suggests that hTERT inhibits cellular apoptosis by telomere-independent functions, the mechanisms involved are not fully understood. Here, we show that hTERT contains a BH3-like motif, a short peptide sequence found in BCL-2 family proteins, and interacts with anti-apoptotic BCL-2 family proteins MCL-1 and BCL-xL, suggesting a functional link between hTERT and the mitochondrial pathway of apoptosis. Additionally, we propose that hTERT can be categorized into the atypical BH3-only proteins that promote cellular survival, possibly due to the non-canonical interaction between hTERT and antiapoptotic proteins. Although the detailed mechanisms underlying the hTERT BH3-like motif functions and interactions between hTERT and BCL-2 family proteins have not been elucidated, this work proposes a possible connection between hTERT and BCL-2 family members and reconsiders the role of the BH3-like motif as an interaction motif.

Keywords

References

  1. Ahmed, S., Passos, J.F., Birket, M.J., Beckmann, T., Brings, S., Peters, H., Birch-Machin, M.A., von Zglinicki, T., and Saretzki, G. (2008). Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 121, 1046-1053. https://doi.org/10.1242/jcs.019372
  2. Ali, M., Devkota, S., Roh, J.I., Lee, J., and Lee, H.W. (2016). Telomerase reverse transcriptase induces basal and amino acid starvation-induced autophagy through mTORC1. Biochem. Biophys. Res. Commun. 478, 1198-1204. https://doi.org/10.1016/j.bbrc.2016.08.094
  3. Aouacheria, A., Rech de Laval, V., Combet, C., and Hardwick, J.M. (2013). Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol. 23, 103-111. https://doi.org/10.1016/j.tcb.2012.10.010
  4. Aouacheria, A., Combet, C., Tompa, P., and Hardwick, J.M. (2015). Redefining the BH3 Death Domain as a 'Short Linear Motif'. Trends Biochem. Sci. 40, 736-748. https://doi.org/10.1016/j.tibs.2015.09.007
  5. Blackburn, E.H. (1992). Telomerases. Ann. Rev. Biochem. 61, 113-129. https://doi.org/10.1146/annurev.bi.61.070192.000553
  6. Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A., and Greider, C.W. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25-34. https://doi.org/10.1016/S0092-8674(01)80006-4
  7. Boya, P., and Kroemer, G. (2009). Beclin 1: a BH3-only protein that fails to induce apoptosis. Oncogene 28, 2125-2127. https://doi.org/10.1038/onc.2009.83
  8. Cao, Y., Li, H., Deb, S., and Liu, J.P. (2002). TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21, 3130-3138. https://doi.org/10.1038/sj.onc.1205419
  9. Cheng, H., Fan, X., Lawson, W.E., Paueksakon, P., and Harris, R.C. (2015). Telomerase deficiency delays renal recovery in mice after ischemia-reperfusion injury by impairing autophagy. Kidney Int. 88, 85-94. https://doi.org/10.1038/ki.2015.69
  10. Chipuk, J.E., and Green, D.R. (2008). How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol. 18, 157-164. https://doi.org/10.1016/j.tcb.2008.01.007
  11. Chipuk, J.E., Moldoveanu, T., Llambi, F., Parsons, M.J., and Green, D.R. (2010). The BCL-2 family reunion. Mol. Cell 37, 299-310. https://doi.org/10.1016/j.molcel.2010.01.025
  12. Choi, Y.B., Sandford, G., and Nicholas, J. (2012). Human herpesvirus 8 interferon regulatory factor-mediated BH3-only protein inhibition via Bid BH3-B mimicry. PLoS Pathogens 8, e1002748. https://doi.org/10.1371/journal.ppat.1002748
  13. Cole, C., Barber, J.D., and Barton, G.J. (2008). The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197-201. https://doi.org/10.1093/nar/gkn238
  14. Czabotar, P.E., Lee, E.F., van Delft, M.F., Day, C.L., Smith, B.J., Huang, D.C., Fairlie, W.D., Hinds, M.G., and Colman, P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proc. Natl. Acad. Sci. USA 104, 6217-6222. https://doi.org/10.1073/pnas.0701297104
  15. Czabotar, P.E., Lessene, G., Strasser, A., and Adams, J.M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49-63. https://doi.org/10.1038/nrm3722
  16. Del Bufalo, D., Rizzo, A., Trisciuoglio, D., Cardinali, G., Torrisi, M.R., Zangemeister-Wittke, U., Zupi, G., and Biroccio, A. (2005). Involvement of hTERT in apoptosis induced by interference with Bcl-2 expression and function. Cell Death Differ. 12, 1429-1438. https://doi.org/10.1038/sj.cdd.4401670
  17. Edlich, F., Banerjee, S., Suzuki, M., Cleland, M.M., Arnoult, D., Wang, C., Neutzner, A., Tjandra, N., and Youle, R.J. (2011). Bcl-x(L). retrotranslocates Bax from the mitochondria into the cytosol. Cell 145, 104-116. https://doi.org/10.1016/j.cell.2011.02.034
  18. Haendeler, J., Hoffmann, J., Brandes, R.P., Zeiher, A.M., and Dimmeler, S. (2003). Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol. 23, 4598-4610. https://doi.org/10.1128/MCB.23.13.4598-4610.2003
  19. Haendeler, J., Drose, S., Buchner, N., Jakob, S., Altschmied, J., Goy, C., Spyridopoulos, I., Zeiher, A.M., Brandt, U., and Dimmeler, S. (2009). Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler. Thromb. Vasc. Biol. 29, 929-935. https://doi.org/10.1161/ATVBAHA.109.185546
  20. Hardwick, J.M., and Soane, L. (2013). Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 5, pii: a008722.
  21. Harris, R.C., and Cheng, H. (2016). Telomerase, autophagy and acute kidney injury. Nephron 134, 145-148. https://doi.org/10.1159/000446665
  22. Hawley, R.G., Chen, Y., Riz, I., and Zeng, C. (2012). An integrated bioinformatics and computational biology approach identifies new BH3-only protein candidates. Open Biol. J. 5, 6-16. https://doi.org/10.2174/1874196701205010006
  23. Herman, M.D., Nyman, T., Welin, M., Lehtio, L., Flodin, S., Tresaugues, L., Kotenyova, T., Flores, A., and Nordlund, P. (2008). Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim. FEBS Lett. 582, 3590-3594. https://doi.org/10.1016/j.febslet.2008.09.028
  24. Hsu, Y.T., and Youle, R.J. (1997). Nonionic detergents induce dimerization among members of the Bcl-2 family. J. Biol. Chem. 272, 13829-13834. https://doi.org/10.1074/jbc.272.21.13829
  25. Iglesias-Serret, D., Pique, M., Gil, J., Pons, G., and Lopez, J.M. (2003). Transcriptional and translational control of Mcl-1 during apoptosis. Arch. Biochem. Biophys. 417, 141-152. https://doi.org/10.1016/S0003-9861(03)00345-X
  26. Indran, I.R., Hande, M.P., and Pervaiz, S. (2011). hTERT overexpression alleviates intracellular ROS production, improves mitochondrial function, and inhibits ROS-mediated apoptosis in cancer cells. Cancer Res. 71, 266-276.
  27. Jacobs, S.A., Podell, E.R., and Cech, T.R. (2006). Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat. Struct. Mol. Biol. 13, 218-225. https://doi.org/10.1038/nsmb1054
  28. Kang, H.J., Choi, Y.S., Hong, S.B., Kim, K.W., Woo, R.S., Won, S.J., Kim, E.J., Jeon, H.K., Jo, S.Y., Kim, T.K., et al. (2004). Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J. Neurosci. 24, 1280-1287. https://doi.org/10.1523/JNEUROSCI.4082-03.2004
  29. Kim, N.W., Piatyszek, M.A., Prowse, K.R., Harley, C.B., West, M.D., Ho, P.L., Coviello, G.M., Wright, W.E., Weinrich, S.L., and Shay, J.W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011-2015. https://doi.org/10.1126/science.7605428
  30. Koh, C.M., Khattar, E., Leow, S.C., Liu, C.Y., Muller, J., Ang, W.X., Li, Y., Franzoso, G., Li, S., Guccione, E., et al. (2015). Telomerase regulates MYC-driven oncogenesis independent of its reverse transcriptase activity. J. Clin. Invest. 125, 2109-2122. https://doi.org/10.1172/JCI79134
  31. Kvansakul, M., and Hinds, M.G. (2013). Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis. 4, e909. https://doi.org/10.1038/cddis.2013.436
  32. Landberg, G., Nielsen, N.H., Nilsson, P., Emdin, S.O., Cajander, J., and Roos, G. (1997). Telomerase activity is associated with cell cycle deregulation in human breast cancer. Cancer Res. 57, 549-554.
  33. Lee, J., Sung, Y.H., Cheong, C., Choi, Y.S., Jeon, H.K., Sun, W., Hahn, W.C., Ishikawa, F., and Lee, H.W. (2008). TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27, 3754-3760. https://doi.org/10.1038/sj.onc.1211037
  34. Lin, C.Y., Wu, H.Y., Wang, P.L., and Yuan, C.J. (2010). Mammalian Ste20-like protein kinase 3 induces a caspase-independent apoptotic pathway. Int. J. Biochem. Cell Biol. 42, 98-105. https://doi.org/10.1016/j.biocel.2009.09.012
  35. Longo, P.A., Kavran, J.M., Kim, M.S., and Leahy, D.J. (2013). Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 529, 227-240.
  36. Maida, Y., Yasukawa, M., Furuuchi, M., Lassmann, T., Possemato, R., Okamoto, N., Kasim, V., Hayashizaki, Y., Hahn, W.C., and Masutomi, K. (2009). An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461, 230-235. https://doi.org/10.1038/nature08283
  37. Maiuri, M.C., Criollo, A., Tasdemir, E., Vicencio, J.M., Tajeddine, N., Hickman, J.A., Geneste, O., and Kroemer, G. (2007a). BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy 3, 374-376. https://doi.org/10.4161/auto.4237
  38. Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007b). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26, 2527-2539. https://doi.org/10.1038/sj.emboj.7601689
  39. Mandal, M., and Kumar, R. (1997). Bcl-2 modulates telomerase activity. J. Biol. Chem. 272, 14183-14187. https://doi.org/10.1074/jbc.272.22.14183
  40. Massard, C., Zermati, Y., Pauleau, A.L., Larochette, N., Metivier, D., Sabatier, L., Kroemer, G., and Soria, J.C. (2006). hTERT: a novel endogenous inhibitor of the mitochondrial cell death pathway. Oncogene 25, 4505-4514. https://doi.org/10.1038/sj.onc.1209487
  41. Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 11, 385-396. https://doi.org/10.1038/ncb1846
  42. Moldoveanu, T., Follis, A.V., Kriwacki, R.W., and Green, D.R. (2014). Many players in BCL-2 family affairs. Trends Biochem. Sci. 39, 101-111. https://doi.org/10.1016/j.tibs.2013.12.006
  43. Nijhawan, D., Fang, M., Traer, E., Zhong, Q., Gao, W., Du, F., and Wang, X. (2003). Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1475-1486. https://doi.org/10.1101/gad.1093903
  44. Perciavalle, R.M., Stewart, D.P., Koss, B., Lynch, J., Milasta, S., Bathina, M., Temirov, J., Cleland, M.M., Pelletier, S., Schuetz, J.D., et al. (2012). Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 14, 575-583. https://doi.org/10.1038/ncb2488
  45. Rahman, R., Latonen, L., and Wiman, K.G. (2005). hTERT antagonizes p53-induced apoptosis independently of telomerase activity. Oncogene 24, 1320-1327. https://doi.org/10.1038/sj.onc.1208232
  46. Reed, J.C. (1997). Double identity for proteins of the Bcl-2 family. Nature 387, 773-776. https://doi.org/10.1038/42867
  47. Rodolfo, C., Mormone, E., Matarrese, P., Ciccosanti, F., Farrace, M.G., Garofano, E., Piredda, L., Fimia, G.M., Malorni, W., and Piacentini, M. (2004). Tissue transglutaminase is a multifunctional BH3-only protein. J. Biol. Chem. 279, 54783-54792. https://doi.org/10.1074/jbc.M410938200
  48. Rooswinkel, R.W., van de Kooij, B., de Vries, E., Paauwe, M., Braster, R., Verheij, M., and Borst, J. (2014). Antiapoptotic potency of Bcl-2 proteins primarily relies on their stability, not binding selectivity. Blood 123, 2806-2815. https://doi.org/10.1182/blood-2013-08-519470
  49. Santos, J.H., Meyer, J.N., Skorvaga, M., Annab, L.A., and Van Houten, B. (2004). Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 3, 399-411. https://doi.org/10.1111/j.1474-9728.2004.00124.x
  50. Saretzki, G. (2009). Telomerase, mitochondria and oxidative stress. Exp. Gerontol. 44, 485-492. https://doi.org/10.1016/j.exger.2009.05.004
  51. Schmidt, J.C., Dalby, A.B., and Cech, T.R. (2014). Identification of human TERT elements necessary for telomerase recruitment to telomeres. eLife 3.
  52. Shamas-Din, A., Brahmbhatt, H., Leber, B. and Andrews, D.W. (2011). BH3-only proteins: orchestrators of apoptosis. Biochim. Biophys. Acta 1813, 508-520. https://doi.org/10.1016/j.bbamcr.2010.11.024
  53. Sharma, N.K., Reyes, A., Green, P., Caron, M.J., Bonini, M.G., Gordon, D.M., Holt, I.J., and Santos, J.H. (2012). Human telomerase acts as a hTR-independent reverse transcriptase in mitochondria. Nucleic Acids Res. 40, 712-725. https://doi.org/10.1093/nar/gkr758
  54. Shay, J.W., Zou, Y., Hiyama, E., and Wright, W.E. (2001). Telomerase and cancer. Hum. Mol. Genet. 10, 677-685. https://doi.org/10.1093/hmg/10.7.677
  55. Steczkiewicz, K., Zimmermann, M.T., Kurcinski, M., Lewis, B.A., Dobbs, D., Kloczkowski, A., Jernigan, R.L., Kolinski, A., and Ginalski, K. (2011). Human telomerase model shows the role of the TEN domain in advancing the double helix for the next polymerization step. Proc. Natl. Acad. Sci. USA 108, 9443-9448. https://doi.org/10.1073/pnas.1015399108
  56. Tan, K.O., Tan, K.M., Chan, S.L., Yee, K.S., Bevort, M., Ang, K.C., and Yu, V.C. (2001). MAP-1, a novel proapoptotic protein containing a BH3-like motif that associates with Bax through its Bcl-2 homology domains. J. Biol. Chem. 276, 2802-2807. https://doi.org/10.1074/jbc.M008955200
  57. Thebault, S., Agez, M., Chi, X., Stojko, J., Cura, V., Telerman, S.B., Maillet, L., Gautier, F., Billas-Massobrio, I., Birck, C., et al. (2016). TCTP contains a BH3-like domain, which instead of inhibiting, activates Bcl-xL. Sci. Rep. 6, 19725. https://doi.org/10.1038/srep19725
  58. Wang, T., Xue, Y., Wang, M., and Sun, Q. (2012). Silencing of the hTERT gene through RNA interference induces apoptosis via bax/bcl-2 in human glioma cells. Oncol. Rep. 28, 1153-1158. https://doi.org/10.3892/or.2012.1952
  59. Westphal, D., Kluck, R.M., and Dewson, G. (2014). Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ. 21, 196-205. https://doi.org/10.1038/cdd.2013.139
  60. Wirawan, E., Lippens, S., Vanden Berghe, T., Romagnoli, A., Fimia, G.M., Piacentini, M., and Vandenabeele, P. (2012). Beclin1: a role in membrane dynamics and beyond. Autophagy 8, 6-17. https://doi.org/10.4161/auto.8.1.16645
  61. Xia, J., Peng, Y., Mian, I.S., and Lue, N.F. (2000). Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196-5207. https://doi.org/10.1128/MCB.20.14.5196-5207.2000
  62. Xie, Z., Xiao, Z., and Wang, F. (2017). Hepatitis C virus nonstructural 5A protein (HCV-NS5A) inhibits hepatocyte apoptosis through the NF-kappab/miR-503/bcl-2 pathway. Mol. Cells 40, 202-210.
  63. Yang, E., Zha, J., Jockel, J., Boise, L.H., Thompson, C.B., and Korsmeyer, S.J. (1995). Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291. https://doi.org/10.1016/0092-8674(95)90411-5
  64. Zha, J., Harada, H., Osipov, K., Jockel, J., Waksman, G., and Korsmeyer, S.J. (1997). BH3 domain of BAD is required for heterodimerization with BCL-XL and pro-apoptotic activity. J. Biol. Chem. 272, 24101-24104. https://doi.org/10.1074/jbc.272.39.24101
  65. Zhang, Z., Yu, L., Dai, G., Xia, K., Liu, G., Song, Q., Tao, C., Gao, T., and Guo, W. (2017). Telomerase reverse transcriptase promotes chemoresistance by suppressing cisplatin-dependent apoptosis in osteosarcoma cells. Sci. Rep. 7, 7070. https://doi.org/10.1038/s41598-017-07204-w

Cited by

  1. Non-canonical Roles of Telomerase: Unraveling the Imbroglio vol.7, pp.None, 2018, https://doi.org/10.3389/fcell.2019.00332
  2. Non-canonical Functions of Telomerase Reverse Transcriptase: Emerging Roles and Biological Relevance vol.20, pp.None, 2018, https://doi.org/10.2174/1568026620666200131125110
  3. Divergence of the PIERCE1 expression between mice and humans as a p53 target gene vol.15, pp.8, 2020, https://doi.org/10.1371/journal.pone.0236881
  4. Depletion of Adipocyte Becn1 Leads to Lipodystrophy and Metabolic Dysregulation vol.70, pp.1, 2018, https://doi.org/10.2337/db19-1239
  5. The Regulation of ROS- and BECN1-Mediated Autophagy by Human Telomerase Reverse Transcriptase in Glioblastoma vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6636510
  6. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes vol.9, pp.5, 2018, https://doi.org/10.3390/biomedicines9050526