DOI QR코드

DOI QR Code

Use of DNA-Specific Anthraquinone Dyes to Directly Reveal Cytoplasmic and Nuclear Boundaries in Live and Fixed Cells

  • Received : 2009.03.11
  • Accepted : 2009.03.13
  • Published : 2009.04.30

Abstract

Image-based, high-content screening assays demand solutions for image segmentation and cellular compartment encoding to track critical events - for example those reported by GFP fusions within mitosis, signalling pathways and protein translocations. To meet this need, a series of nuclear/cytoplasmic discriminating probes have been developed: DRAQ5$^{TM}$ and CyTRAK Orange$^{TM}$. These are spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. At their most fundamental they provide a convenient fluorescent emission signature which is spectrally separated from the commonly used reporter proteins (e.g. eGFP, YFP, mRFP) and fluorescent tags such as Alexafluor 488, fluorescein and Cy2. Additionally, they do not excite in the UV and thus avoid the complications of compound UV-autofluorescence in drug discovery whilst limiting the impact of background sample autofluorescence. They provide a convenient means of stoichiometrically labelling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Further developments have permitted the simultaneous and differential labelling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions and most recently compound in vitro toxicology testing.

Keywords

References

  1. Amersham Biosciences (2003). GFP-Rac1 assay: user manual, section 5.2.7. 25-8007-27UM, Rev. A
  2. Bjornsson, S., Wahlstrom, S., Norstrom, E., Bernevi, I., O'Neill, U., Johansson, E., Runstrom, H., and Simonsson, P. (2008). Total nucleated cell differential for blood and bone marrow using a single tube in a five-color flow cytometer. Cytometry 74, 91-103 https://doi.org/10.1002/cyto.b.20382
  3. Cogger, V.C., Arias, I.M., Warren, A., McMahon, A.C., Kiss, D.L., Avery, V.M., and Le Couteur, D.G. (2008). The response of fenestrations, actin, and caveolin-1 to vascular endothelial growth factor in SK Hep1 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G137-G145 https://doi.org/10.1152/ajpgi.00069.2008
  4. Conour, J.E., Graham, W.V., and Gaskins, H.R. (2004). A combined in vitro/bioinformatic investigation of redox regulatory mechanisms governing cell cycle progression. Physiol. Genom. 18, 196-205 https://doi.org/10.1152/physiolgenomics.00058.2004
  5. Errington, R.J., Pors, K., Patterson, L.H., Ogrodzinski, S.J., and Smith, P.J. (2006). $CyTRAK^{TM}$ probes: novel nuclear and cytoplasm discriminators compatible with GFP-based HCS and HTS assays. Poster presentation: Society for Biomolecular Sciences Annual Conference, USA
  6. Foley, K.F., De Frutos, S., Laskovski, K.E., Tegge, W., and Dostmann, W.R. (2005). Culture conditions influence uptake and intracellular localization of the membrane permeable cGMP-dependent protein kinase inhibitor DT-2. Front. Biosci. 10, 1302-1312 https://doi.org/10.2741/1620
  7. Garcia-Escarp, M., Martinez-Munoz, V., Sales-Pardo, I., Barquinero, J., Domingo, J.C., Marin, P., and Petriz, J. (2004). Flow cytometrybased approach to ABCG2 function suggests that the transporter differentially handles the influx and efflux of drugs. Cytometry 62A, 129-138 https://doi.org/10.1002/cyto.a.20072
  8. George, T.C., Morrissey, P.J., Cui, C., Singh, S., and Fitzgerald-Bocarsly, P. (2008). Kinetics of CpG internalization and sub-cellular organelle co-localization within circulating human plasmcytoid dendritic cells. Application note, Amnis Corp
  9. Gustin, E., Van Loock, M., Van Acker, K., and Krausz, E. (2009). Weak signals and strong artifacts: HCS in antiviral drug discovery. Oral presentation: High Content Analysis Conference, USA, p. 5
  10. Haasen, D., Wolff, M., Valler, M.J., and Heilker, R. (2006). Comparison of G-Protein coupled receptor desensitization-related $\beta$arrestin redistribution using confocal and non-confocal imaging. Comb. Chem. High Throughput Screen. 9, 37-47 https://doi.org/10.2174/138620706775213921
  11. Hannoush, R.N. (2008). Kinetics of Wnt-driven b-Catenin stabilization revealed by quantitative and temporal imaging. PLoS ONE 3, e3498 https://doi.org/10.1371/journal.pone.0003498
  12. Laakkonen, J.P., Kaikkonen, M.U., Ronkainen, P.H.A., Ihalainen, T.O., Niskanen, E.A., Hakkinen, M., Salminen, M., Kulomaa, M.S., Yla-Herttuala, S., Airenne, K.J., et al. (2007). Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell. Microbiol. 10, 667-681 https://doi.org/10.1111/j.1462-5822.2007.01074.x
  13. Loechel, F., Bjorn, S., Linde, V., Praestegaard, M., and Pagliaro, L. (2006). High content translocation assays for pathway profiling. In Methods in Molecular Biology, Vol. 356: High content screening: a powerful approach to systems cell biology and drug discovery. D.L. Taylor, J.R. Haskins, and K. Giuliano, eds. (Totowa, USA: Humana Press, Inc.), pp. 401-414
  14. Martin, R.M., Leonhardt, H., and Cardoso, M.C. (2005). DNA labeling in living cells. Cytometry 67A, 45-52 https://doi.org/10.1002/cyto.a.20172
  15. May, K., Preckel, H., Schaaf, S., and Mumtsidu, E. (2008). Imagebased quantification of cyclin B1 and DNA content during cell cycle using the opera HCS platform. Poster Presentation: SBS/ELRIG Drug Discovery Conference: UK
  16. Payne, S., Wylie, P., Edward, R., and Goulter, A. (2007). Use of farred emitting DNA dye DRAQ5 for cell cycle analysis with microplate cytometry. Poster Presentation: Drug Discovery and Technology Conference, USA
  17. Pelkmans, L., Fava, E., Grabner, H., Hannus, M., Habermann, B., Krausz, E., and Zerial, M. (2005). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78-86 https://doi.org/10.1038/nature03571
  18. Plander, M., Brockhoff, G., Barlage, S., Schwarz, S., Rothe, G., and Knuechel, R. (2003). Optimization of three- and four-color multiparameter DNA analysis in lymphoma specimens. Cytometry 54A, 66-74 https://doi.org/10.1002/cyto.a.10051
  19. Primo, D., Flores, J., Quijano, S., Sanchez, M.L., Sarasquete, M.E., del Pino-Montes, J., Gaarder, P.I., Gonzalez, M., and Orfao, A. (2006). Impact of BCR/ABL gene expression on the proliferative rate of different subpopulations of haematopoietic cells in chronic myeloid leukaemia. Brit. J. Haematol. 135, 43-51 https://doi.org/10.1111/j.1365-2141.2006.06265.x
  20. Richardson, C., et al. (2008). Development of a mechanistic cellbased assay for the identification of JAK2 inhibitors. Poster presentation: SBS/ELRIG drug discovery conference, UK
  21. Rosado, A., Zanella, F., Garcia, B., Carnero, A., and Link, W. (2008). A dual-color fluorescence-based platform to identify selective inhibitors of Akt signaling. PLoS ONE 3, e1823 https://doi.org/10.1371/journal.pone.0001823
  22. Simonen, M., Ibig-Rehm, Y., Hofmann, G., Zimmermann, J., Albrecht, G., Magnier, M., Heidinger, V., and Gabriel, D. (2008). High-content assay to study protein prenylation. J. Biomol. Screen. 13, 456-467 https://doi.org/10.1177/1087057108318757
  23. Smith, P.J., Blunt, N., Wiltshire, M., Hoy, T., Teesdale-Spittle, P., Craven, M.R., Watson, J.V., Amos, W.B., Errington, R.J., and Patterson, L.H. (2000). Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry 40, 280-291 https://doi.org/10.1002/1097-0320(20000801)40:4<280::AID-CYTO4>3.0.CO;2-7
  24. Swerts, K., Van Roy, N., Benoit, Y., Laureys, G., and Philippe, J. (2007). DRAQ5: Improved flow cytometric DNA content analysis and minimal residual disease detection in childhood malignancies. Clin. Chim. Acta 379, 154-157 https://doi.org/10.1016/j.cca.2006.12.008
  25. Visconti, R.P., Ebihara, Y., LaRue, A.C., Fleming, P.A., McQuinn, T.C., Masuya, M., Minamiguchi, H., Markwald, R.R., Ogawa, M., and Drake, C.J. (2006). An in vivo analysis of hematopoietic stem cell potential hematopoietic origin of cardiac valve interstitial cells. Circ. Res. 98, 690-696 https://doi.org/10.1161/01.RES.0000207384.81818.d4
  26. Xu, J.J., Henstock, P.V., Dunn, M.C., Smith, A.R., Chabot, J.R., and de Graaf, D. (2008). Cellular imaging predictions of clinical druginduced liver injury. Toxicol. Sci. 105, 97-105 https://doi.org/10.1093/toxsci/kfn109
  27. Yuan, C.M., Douglas-Nikitin, V.K., Ahrens, K.P., Luchetta, G.R., Braylan, R.C., and Yang, L. (2004). DRAQ5-based DNA content analysis of hematolymphoid cell subpopulations discriminated by surface antigens and light scatter properties. Cytometry 58, 4752 https://doi.org/10.1002/cyto.b.20000

Cited by

  1. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells vol.2, pp.6, 2009, https://doi.org/10.1039/c0nr00080a
  2. The Use of DRAQ5 to Monitor Intracellular DNA in Escherichia coli by Flow Cytometry vol.20, pp.4, 2009, https://doi.org/10.1007/s10895-010-0636-y
  3. Flow cytometric detection of dyserythropoiesis: a sensitive and powerful diagnostic tool for myelodysplastic syndromes vol.27, pp.10, 2009, https://doi.org/10.1038/leu.2013.178
  4. Evaluation of Compound Optical Interference in High-Content Screening vol.23, pp.4, 2018, https://doi.org/10.1177/2472555217707725
  5. Probing cytochrome P450 bioactivation and fluorescent properties with morpholinyl-tethered anthraquinones vol.28, pp.8, 2009, https://doi.org/10.1016/j.bmcl.2018.03.040
  6. Ir-Catalyzed C-H Amidation and Borylation of Anthraquinones vol.84, pp.8, 2019, https://doi.org/10.1021/acs.joc.9b00106
  7. Synthesis of Anthraquinones by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of a 1,2-Bis(propiolyl)benzene Derivative with Alkynes vol.7, pp.11, 2009, https://doi.org/10.3390/inorganics7110138
  8. Intrinsic fluorescence properties of antimalarial pyrido[1,2-a]benzimidazoles facilitate subcellular accumulation and mechanistic studies in the human malaria parasite Plasmodium falciparum vol.18, pp.42, 2020, https://doi.org/10.1039/d0ob01730b