• Title/Summary/Keyword: Lithium battery anode

Search Result 349, Processing Time 0.03 seconds

Cell Performances of Surface-Treated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Material for Li Secondary Battery (리륨이차전지용 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 양극활물질의 표면개질에 따른 전지특성)

  • Kim, Hyun-Soo;Kong, Ming-Zhe;Kim, Ke-Tack;Moon, Seong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.294-295
    • /
    • 2007
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ material was surface modified with Zr-phosphate. Scanning electron microscope, energy dispersive spectroscopy and electrochemical studies indicate that surface modification improve the rate capability. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode.

  • PDF

Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage

  • An, Geon-Hyoung;Kim, Hyeonjin;Ahn, Hyo-Jin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.146-152
    • /
    • 2018
  • Due to their excellent mechanical durability and high electrical conductivity, carbon and silicon composites are potentially suitable anode materials for Li-ion batteries with high capacity and long lifespan. Nevertheless, the limitations of the composites include their poor ionic diffusion at high current densities during cycling, which leads to low ultrafast performance. In the present study, seeking to improve the ionic diffusion using hydrothermal method, electrospinning, and carbonization, we demonstrate the unique design of excavated carbon and silicon composites (EC/Si). The outstanding energy storage performance of EC/Si electrode provides a discharge specific capacity, impressive rate performance, and ultrafast cycling stability.

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui;Jung, Kwangeun;Yim, Taeeun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1345-1351
    • /
    • 2018
  • To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries (고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학)

  • Sion Ha;Kyeong-Ho Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.11-25
    • /
    • 2024
  • Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Characterization of SEI layer for Surface Modified Cathode of Lithium Secondary Battery Depending on Electrolyte Additives (전해질 첨가제에 따른 graphite 음극의 SEI분석 및 전기 화학적 특성 고찰)

  • Lee, Sung Jin;Cha, Eun Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.69-79
    • /
    • 2016
  • Lithium ion battery with high energy density is expanding its application area to electric automobile and electricity storage field beyond existing portable electric devices. Such expansion of an application field is demanding higher characteristic and stable long life characteristic of an anode material, the natural graphite that became commercialized in lithium ion battery. This thesis produced cathode by using natural graphite anode material, analyzed creation of the cathode SEI film created due to initial reaction by using electrolyte additives, VC (vinylene carbonate), VEC (vinyl ethylene carbonate), and FEC (fluoroethylene carbonate), and considered correlation with the accompanying electrochemical transformation. This study compared and analyzed the SEI film variation of natural graphite cathode according to the electrolyte additive with SEI that is formed at the time of initial filling and cathode of $60^{\circ}C$ life characteristic. At the time of initial filling, the profile showed changes due to the SEI formation, and SEI was formed in No-Additive in approximately 0.9 V through EVS, but for VC, VEC, and FEC, the formation reaction was created above 1 V. In $60^{\circ}C$ lifespan characteristic evaluation, the initial efficiency was highest in No-Additive and showed high contents percentage, but when cycle was progressed, the capacity maintenance rate decreased more than VC and FEC as the capacity and efficiency at the time of filling decreased, and VEC showed lowest performance in efficiency and capacity maintenance rate. Changes of SEI could not be verified through SEM, but it was identified that as the cycle of SEI ingredients was progressed through FT-IR, ingredients of Alkyl carbonate ($RCO_2Li$) affiliation of the $2850-2900cm^{-1}$ was maintained more solidly and the resistance increased as cycle was progressed through EIS, and specially, it was identified that the resistance due to No-Additive and SEI of VEC became very significant. Continuous loss of additives was verified through GC-MS, and the loss of additives from partial decomposition and remodeling of SEI formed the non-uniform surface of SEI and is judged to be the increase of resistance.

Physical Properties of $LiPF_6/PC+EC+DEC$ Electrolyte by the Variation of PC Fraction and Initial Electrochemical Properties of Carbon Anode in the Electrolyte (PC 비율에 따른 $LiPF_6/PC+EC+DEC$ 전해액의 물리적 특성 및 탄소분극과의 초기 전기화학적 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 2000
  • The exfoliation of graphite (layer) was progressed due to the irreversible insertion of PC molecules between graphene layers, when propylene carbonate (PC) solvent was used as the organic solvents. The problem could be mitigated by the replacement of PC by ethylene carbonate (EC). But, the freezing point of EC-based electrolyte increased due to the high freezing point of $EC(36.2^{\circ}C)$. Therefore, EC+PC mixed electrolyte is expected as a good organic electrolyte for lithium ion battery. The EC-based organic electrolyte containing PC within pertinent quantity can be expected to have high molar conductivity and reduced exfoliation of graphite layer. The dielectric constant and molar conductivity of $LiPF_6/PC+EC+DEC$ electrolyte was investigated with a variation in the PC content. The electrochemical properties of carbon electrode in the electrolyte were also investigated. Molar conductivity and dielectric constant increased linearly by increasing the PC volume fraction in the electrolyte. The results of charge-discharge test for carbon/electrolyte/Li cell indicated that the initial irreversible specific capacity(IIC) of MCMB-6-28s and MPCF3000 decreased by the addition of $0.83 vol\%$ of PC, but increased with PC content over than $0.83 vol\%$. In the case of MPCF3000 and PCG100 having less than $10 vol\%$ PC, IIC was lower than 50 mAh/g. The discharge specific capacities varied with carbon material, but did not vary with PC content in the electrolyte.

Synthesis and Electrochemical Characteristics of Mesoporous Silicon/Carbon/CNF Composite Anode (메조기공 Silicon/Carbon/CNF 음극소재 제조 및 전기화학적 특성)

  • Park, Ji Yong;Jung, Min Zy;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.543-548
    • /
    • 2015
  • Si/C/CNF composites as anode materials for lithium-ion batteries were examined to improve the capacity and cycle performance. Si/C/CNF composites were prepared by the fabrication process including the synthesis and magnesiothermic reduction of SBA-15 to obtain Si/MgO by ball milling and the carbonization of phenol resin with CNF and HCl etching. Prepared Si/C/CNF composites were then analysed by BET, XRD, FE-SEM and TGA. Among SBA-15 samples synthesized at reaction temperatures between 50 and $70^{\circ}C$, the SBA-15 at $60^{\circ}C$ showed the largest specific surface area. Also the electrochemical performances of Si/C/CNF composites as an anode electrode were investigated by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%). The coin cell using Si/C/CNF composites (Si : CNF = 97 : 3 in weight) showed better capacity (1,947 mAh/g) than that of other composition coin cells. The capacity retention ratio decreased from 84% (Si : CNF = 97 : 3 in weight) to 77% (Si : CNF = 89 : 11 in weight). It was found that the Si/C/CNF composite electrode shows an improved cycling performance and electric conductivity.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

Electrochemical Performance of Pitch coated Nano Silicon Sheets / Graphite Composite as Anode Material (피치로 코팅된 Nano Silicon Sheets/Graphite 음극복합소재의 전기화학적 특성)

  • Lee, Tae Heon;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.487-492
    • /
    • 2021
  • In this study, the electrochemical properties of pitch coated silicon sheets/graphite anode materials were investigated. Using NaCl as a template, silicon sheets were prepared through the stöber method and the magnesiothermic reduction methode. In order to synthesize the anode composite, the silicon sheets and graphite were combined with SDBS. The pitch coated silicon sheets/graphite was synthesized using THF as a solvent for the anode material composite. The physical properties of the prepared anode composites were analysed by XRD, SEM, EDS and TGA. The electrochemical performances of the prepared anode composites were performed by the current charge/discharge, rate performance, cyclic voltammetry and EIS tests in the electrolyte LiPF6 dissolved solvents (EC:DMC:EMC=1:1:1 vol%). As the silicon composition of silicon sheets/graphite composite material increased, the discharge capacity also increased, but the cycle stability tended to decrease. The anode material of pitch coated silicon sheets/graphite composite (silicon sheets:graphite=3:7 weight ratio) showed the initial discharge capacity of 1228.8 mAh/g and the capacity retention ratio of 77% after 50 cycles. From these results, it was found that the cycle stability of pitch coated silicon sheets/graphite was improved.

Dependence of Thermal and Electrochemical Properties of ceramic Coated Separators on the Ceramic Particle Size (알루미나 크기에 따른 세라믹 코팅 분리막의 열적 특성 및 전기화학적 특성)

  • Park, Sun Min;Yu, Ho Jun;Kim, Kwang Hyun;Kang, Yun Chan;Cho, Won Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.2
    • /
    • pp.27-33
    • /
    • 2017
  • Conventional lithium ion batteries suffer from notorious safety issues caused by inevitable lithium dendrite formation and proliferation during over/fast charging processes. The lithium dendrites or mechanical damage on the separator induce internal short circuit in LiB that generates extensive amount of heat within contacted electrode surfaces through the separator. During this heat generation, conventional polyolefin separators shrinks dramatically, and increasing short circuit pathway, that causes the battery to explode. To overcome this serious issue, ceramic coated separators are developed in commercial LiB to enhance thermal and mechanical stability. In this paper, various size(IL = 488.5 nm, I = 538.7 nm, S = 810.3 nm, D = 1533.3 nm) of $Al_2O_3$ particles are coated using styrene-butadiene rubber(SBR) / carboxymethyl cellulose(CMC) binder on PE separator to investigate its thermal stability and electrochemical effect on LiB coin cell with NCM cathode and Li metal anode.