DOI QR코드

DOI QR Code

Hybrid Energy Storage Mechanism Through Solid Solution Chemistry for Advanced Secondary Batteries

고성능 이차 전지용 하이브리드 에너지 저장 메커니즘을 위한 고용체 화학

  • Sion Ha (Department of Materials Science and Engineering, Pukyong National University) ;
  • Kyeong-Ho Kim (Department of Materials Science and Engineering, Pukyong National University)
  • Received : 2023.10.25
  • Accepted : 2023.11.10
  • Published : 2024.01.01

Abstract

Lithium-ion batteries (LIBs) have attracted great attention as the common power source in energy storage fields of large-scale applications such as electrical vehicles (EVs), industries, power plants, and grid-scale energy storage systems (ESSs). Insertion, alloying, and conversion reactions are the main electrochemical energy storage mechanisms in LIBs, which determine their electrochemical properties and performances. The electrochemical reaction mechanisms are determined by several factors including crystal structure, components, and composition of electrode materials. This article reviews a new strategy to compensate for the intrinsic shortcomings of each reaction mechanism by introducing the material systems to form a single compound with different types of reaction mechanisms and to allow the simultaneous hybrid electrochemical reaction of two different mechanisms in a single solid solution phase.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2023년)에 의하여 연구되었음.

References

  1. H. S. Das, M. M. Rahman, S. Li, and C. W. Tan, Renewable Sustainable Energy Rev., 120, 109618 (2020). doi: https://doi.org/10.1016/j.rser.2019.109618
  2. M. A. Hannan, M. M. Hoque, A. Mohamed, and A. Ayob, Renewable Sustainable Energy Rev., 69, 771 (2017). doi: https://doi.org/10.1016/j.rser.2016.11.171
  3. B. Xiao, J. Ruan, W. Yang, P. D. Walker, and N. Zhang, Renewable Sustainable Energy Rev., 149, 111194 (2021). doi: https://doi.org/10.1016/j.rser.2021.111194
  4. M. R. Khalid, I. A. Khan, S. Hameed, M.S.J. Asghar, and J. S. Ro, IEEE Access, 9, 128069 (2021). doi: https://doi.org/10.1109/ACCESS.2021.3112189
  5. C. D. Quilty, D. Wu, W. Li, D. C. Bock, L. Wang, L. M. Housel, A. Abraham, K. J. Takeuchi, A. C. Markchilok, and E. S. Takeuchi, Chem. Rev., 123, 1327 (2023). doi: https://doi.org/10.1021/acs.chemrev.2c00214
  6. Y. Liu, G. Zhou, K. Liu, and Y. Cui, Acc. Chem. Res., 50, 2895 (2017). doi: https://doi.org/10.1021/acs.accounts.7b00450
  7. G. G. Amatucci and N. Pereira, J. Fluorine Chem., 128, 243 (2007). doi: https://doi.org/10.1016/j.jfluchem.2006.11.016
  8. J. Lu, Z. Chen, F. Pan, Y. Cui, and K. Amine, Electrochem. Energy Rev., 1, 35 (2018). doi: https://doi.org/10.1007/s41918-018-0001-4
  9. S. Chae, S. H. Choi, N. Kim, J. Sung, and J. Cho, Angew. Chem. Int. Ed., 59, 110 (2020). doi: https://doi.org/10.1002/anie.201902085
  10. H. J. Kwon, J. Y. Hwang, H. J. Shin, M. G. Jeong, K. Y. Chung, Y. K. Sun, and H. G. Jung, Nano Lett., 20, 625 (2020). doi: https://doi.org/10.1021/acs.nanolett.9b04395
  11. K. H. Kim, W. S. Kim, and S. H. Hong, Nanoscale, 11, 13494 (2019). doi: https://doi.org/10.1039/c9nr02016k
  12. K. H. Kim, J. Oh, C. H. Jung, M. Kim, B. M. Gallant, and S. H. Hong, Energy Storage Mater., 41, 310 (2021). doi: https://doi.org/10.1016/j.ensm.2021.06.011
  13. K. H. Kim and S. H. Hong, Adv. Energy Mater., 11, 2003609 (2021). doi: https://doi.org/10.1002/aenm.202003609
  14. H. H. Kim, K. H. Kim, and S. H. Hong, Chem. Eng. J., 455, 140798 (2023). doi: https://doi.org/10.1016/j.cej.2022.140798
  15. P. G. Bruce, B. Scrosati, and J. M, Tarason, Angew. Chem. Int. Ed., 47, 2930 (2008). doi: https://doi.org/10.1002/anie.200702505
  16. M. G. Kim and J. Cho, Adv. Funct. Mater., 19, 1497 (2009). doi: https://doi.org/10.1002/adfm.200801095
  17. J. H. Chen and K. H. Whitmire, Coord. Chem. Rev., 355, 271 (2018). doi: https://doi.org/10.1016/j.ccr.2017.08.029
  18. C. M. Park, Y. U. Kim, and H. J. Sohn, Chem. Mater., 21, 5566 (2009). doi: https://doi.org/10.1021/cm902745a
  19. C. Yao, J. Xu, Y. Zhu, R. Zhang, Y. Shen, and A. Xie, Appl. Surf. Sci., 513, 145777 (2020). doi: https://doi.org/10.1016/j.apsusc.2020.145777
  20. G. Cai, Z. Wu, T. Luo, Y. Zhong, X. Guo, Z. Zhang, X. Wang, and B. Zhong, RSC Adv., 10, 3936 (2020). doi: https://doi.org/10.1039/c9ra10729k
  21. D. Bresser, S. Passerini, and B. Scrosati, Energy. Environ. Sci., 9, 3348 (2016). doi: https://doi.org/10.1039/c6ee02346k
  22. F. Wu, J. Bai, J. Feng, and S. Xiong, Nanoscale, 7, 17211 (2015). doi: https://doi.org/10.1039/c5nr04791a
  23. G. Martin, L. Rentsch, M. Hock, and M. Bertau, Energy Storage Mater., 6, 171 (2017). doi: https://doi.org/10.1016/j.ensm.2016.11.004
  24. K. Chayambuka, G. Mulder, D. L. Danilov, and P.H.L. Notten, Adv. Energy Mater., 8, 1800079 (2018). doi: https://doi.org/10.1002/aenm.201800079
  25. P. K. Nayak, L. Yang, W. Brehm, and P. Adelhelm, Angew. Chem. Int. Ed., 57, 102 (2018). doi: https://doi.org/10.1002/anie.201703772
  26. E. Edison, S. Sreejith, C. T. Lim, and S. Madhavi, Sustainable Energy Fuels, 2, 2567 (2018). doi: https://doi.org/10.1039/c8se00381e
  27. N. Gong, C. Deng, B. Wan, Z. Wang, Z. Li, H. Gou, and F. Gao, Inorg. Chem., 57, 9385 (2018). doi: https://doi.org/10.1021/acs.inorgchem.8b01380