• Title/Summary/Keyword: Lithium Ion

Search Result 1,357, Processing Time 0.029 seconds

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

Battery Pack of Elastically Adhering Protection Circuit Module (보호회로가 탄성적으로 부착된 전지 팩)

  • Cho, Kyeung-Ho;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1740-1749
    • /
    • 2009
  • As mobile devices evolve and digital convergence trend is here to stay, mobile phones are built with multiple functions including cameras, MP3s, TVs and game consoles. As a consequence, such multi-functional mobile phones come to spend more power, facilitating development of next-generation ultra-capacity lithium ion battery. In addition, environmental regulations and rising oil prices cause demand for hybrid cars to keep rising. Accordingly, more and more attention is being paid to medium and large batteries and more efforts are being made to realize lower battery prices, higher outputs and stability. This study presented a patent technology related to the lithium ion battery packing that allows reducing processes related, increasing productivity and recycling parts other than the body. The lithium ion battery pack to which protection circuits are elastically attached provides short circuit protection for the circuit and the body and makes electric connection of the circuit and the body easier.

Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles (전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석)

  • Oh, Eui-young;Min, Dong Seok;Han, Ji Yun;Jung, Seungho;Kang, Tae-sun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 2019
  • As the market for portable electronic devices expands, the demand for Lithium Ion Battery (LIB) is also increasing. LIB has higher efficiency than other secondary batteries, but there is a risk of explosion / fire due to thermal runaway reaction. Especially, Electric Vehicles (EV) equipped with a large capacity LIB cell also has a danger due to a large amount of toxic gas generated by a fire. Therefore, it is necessary to analyze the risk of toxic gas generated by EV fire to minimize accident damage. In this study, the flow of toxic gas generated by EV fire was numerically analyzed using Computational Fluid Dynamic. Scenarios were established based on literature data and EV data to confirm the effect distance according to time and exposure standard. The purpose of this study is to analyze the risk of toxic gas caused by EV fire and to help minimize the loss of life and property caused by accidents.

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

Design of a Wireless Monitoring System for Analyzing the Usage Characteristics of Lithium-ion Batteries (리튬이온 배터리의 사용 특성 분석을 위한 무선 모니터링 시스템 설계)

  • Jae-Yong Park;Yang-Hee Joung;Seong-Jun Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.1067-1074
    • /
    • 2024
  • Various monitoring systems are in operation in large-scale production facilities such as Yeosu Industrial Complex and the power equipment for operating these systems uses protective devices with built-in low-power lithium-ion batteries to cope with poor environments. In this study, a wireless monitoring system was designed and implemented to analyze the usage characteristics of these lithium-ion batteries. By using the system, the temperature and humidity of the protective device including the battery, gas generation due to charging and discharging of the battery within the protective device, and changes in battery characteristics can be monitored wirelessly at all times. Through this system, the stable management and power supply of batteries required for monitoring devices in industrial complexes are provided, thereby contributing to the establishment of an efficient operation and management system for factory production facilities.

Large Language Model-based SHAP Analysis for Interpretation of Remaining Useful Life Prediction of Lithium-ion Battery (거대언어모델 기반 SHAP 분석을 이용한 리튬 이온 배터리 잔존 수명 예측 기법 해석)

  • Jaeseung Lee;Jehyeok Rew
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.5
    • /
    • pp.51-68
    • /
    • 2024
  • To safely operate lithium-ion batteries that power mobile electronic devices, it is crucial to accurately predict the remaining useful life (RUL) of the battery. Recently, with the advancement of machine learning technologies, artificial intelligence (AI)-based RUL prediction models for batteries have been actively researched. However, existing models have limitations as the reasoning process within the models is not transparent, making it difficult to fully trust and utilize the predicted values derived from machine learning. To address this issue, various explainable AI techniques have been proposed, but these techniques typically visualize results in the form of graphs, requiring users to manually analyze the graphs. In this paper, we propose an explainable RUL prediction method for lithium-ion batteries that interprets the reasoning process of the prediction model in textual form using SHAP analysis based on large language models (LLMs). Experimental results using publicly available lithium-ion battery datasets demonstrated that the LLM-based SHAP analysis enabled us to concretely understand the model's prediction rationale in textual form.

Leaching of Valuable Metals from NCM Cathode Active Materials in Spent Lithium-Ion Battery by Malic acid (폐리튬이온전지 NCM 양극활물질로부터 말릭산을 이용한 유가금속의 침출)

  • Son, Seong Ho;Kim, Jin Hwa;Kim, Hyun-Jong;Kim, Sun Jung;Lee, Man Seung
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2014
  • Nickel, cobalt and manganese-based(NCM, $Li(Ni_xCo_yMn_z)O_2$) cathode active materials of spent lithium-ion batteries contained valuable metals such as cobalt(15 ~ 20%), nickel(25 ~ 30%), manganese(10 ~ 15%) and lithium(5 ~ 10%). It was investigated the eco-friendly leaching process for the recovery of valuable metal from spent lithium-ion battery NCM cathode active materials by DL-malic acid($C_4H_5O_6$) as an organic leachant in this research. The experiments were carried out to optimize the process parameters for the recovery of cobalt, nickel and lithium by varying the concentration of lixivant, reductant concentration, solid/liquid ratio and temperature. The leaching solution was analyzed using ICP-OES(Inductively Coupled Plasma Optic Emission Spectrometer). Cathode active materials of 5 wt. % were introduced into the leaching solution which was 2 M DL-malic acid in addition of 5 vol. % $H_2O_2$ at $80^{\circ}C$ and it resulted in the recovery of 99.10% cobalt, 99.80% nickel and 99.75% lithium in 120 min. $H_2O_2$ in DL-malic acid solution acts as an effective reducing agents, which enhance the leaching of metals.

Electrochemical Characteristics of Carbon Coated SnO2-SiO2 Anode Materials (탄소 피복된 SnO2-SiO2 음극활물질의 전기화학적 특성)

  • Jeong, Gu-Hyun;Na, Byung-Ki
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.44-50
    • /
    • 2013
  • Tin-based materials for lithium ion battery have been proposed as new anode candidates owing to their higher specific capacity and relatively high lithium insertion potential. Tin-based materials have been extensively studied as possible replacements for carbon anodes in lithium ion batteries. However, the large volume expansion results in severe particle cracking with loss of electrical contact, giving irreversible capacity losses which prevent the widespread use of tin-based materials in lithium batteries. So remaining studies of tin-based materials are alleviating volume expansion and improving cycle performance. In this work, $SnO_2-SiO_2$ composites were manufactured with sol-gel method to overcome their volume expansion. Carbon was coated with 10 vol% propylene gas. The characteristics of active material and the effect of heat treatment were investigated with TG/DTA, XRD, SEM and FT-IR. Electrochemical characteristics of these composites were measured with CR2032 type coin cells. Carbon coated $SnO_2-SiO_2$at $300^{\circ}C$ heat treatment showed the best electrochemical performance.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung;Chang Hankwon;Jang Hee Dong;Sohn Jeong-Soo
    • Resources Recycling
    • /
    • v.14 no.6 s.68
    • /
    • pp.37-43
    • /
    • 2005
  • [ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.