References
- Andrioaia, D., Gaitan, V., Cuela, G. and Banu, I. (2024). Predicting the RUL of Li-Ion Batteries in UAVs Using Machine Learning Techniques, Computers, 13(64). https://doi.org/10.3390/computers13030064
- Bentejac, C., Csorgo, A. and Martinez-Munoz, G. (2020). A Comparative Analysis of Gradient Boosting Algorithms, Artificial Intelligence Review, 54, 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
- Chen, Y., Kang, Y., Zhao, Y., Wang, Li, Liu, J., Li, Y., Liang, Z., He, X., Li, X., Tavajohi, N. and Li, B. (2021). A Review of Lithium-ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards, J ournal of Energy Chemistry, 59, 83-99. https://doi.org/10.1016/j.jechem.2020.10.017
- Devie, A., Baure, G. and Dubarry, M. (2018). Intrinsic Variability in the Degradation of a Batch of Commercial 18650 Lithium-ion Cells, Energies, 11(5), 1031. https://doi.org/10.3390/en11051031
- Dhabe, P. R., Paraskar, S. R. and Jadhao, S. S. (2023). Battery State of Charge Estimation Methods - A Critical Review, International J ournal of Innovative Research in Electrial, Electronics, Instrumentation and Control Engineering, 11(12). https://doi.org/10.17148/IJIREEICE.2023.111201
- Fang, X., Xu, W., Tan, F., Zhang, J., Hu, Z., Qi, Y., Nickleach, S., Scolinsky, D., Sengamedu, S. and Faloutsos, C. (2024). Large Language Models(LLMs) on Tabular Data: Prediction, Generation, and Understanding - A Survey, arXiv preprint, arXiv:2402.17644
- Gao, K., Xu, J., Li, Z., Cai, Z., Jiang, D. and Zeng, A. (2022). A Novel Remaining Useful Life Prediction Method for Capacity Diving Lithium-ion Batteries, ACS Omega, 7(30), 26701-26714. https://doi.org/10.1021/acsomega.2c03043
- Gohel, P., Singh, P. and Mohanty, M. (2021). Explainable AI: Current Status and Future Directions, arXiv preprint, arXiv:2107.07045
- Gopalakrishnan, R., Vidhya, D. S., Bharath, P., Kaviyan, P. and Sivaselvam, P. (2023). Battery State Estimation and Control System for Mobile Charging Station for Electric Vehicles, International Conference on Sustainable Computing and Data Communication Systems, Mar. 23-25, Erode, India, pp. 985-989. https://doi.org/10.1109/ICSCDS56580.2023.10104624
- Jiang, J., Shi, W., Zheng, J., Zuo, P., Xiao, J. A., Chen, X., Xu, W. and Zhang, J. (2013). Optimized Operating Range for Large-Format LiFePO4/Graphite Batteries, J ournal of the Electrochemical Society, 161(3), 336-341. https://doi.org/10.1149/2.052403jes
- Jiao, R. H., Ma, X., Li, L. and Xiao, J. P. (2022). Battery Remaining Useful Life Prediction Based on a Combination of ARMA and Degradation Model, 13th International Conference on Reliability, Maintainability, and Safety, Aug. 21-24, Hong Kong, China, pp. 115-119.
- Kim, H. and Yu, Y. (2023). Development of a Regulatory Q&A System for KAERI Utilizing Document Search Algorithms and Large Language Model, J ournal of Korea Society of Industrial Information Systems, 28(5), 31-39. http://doi.org/10.9723/jksiis.2023.28.5.031
- Kim, J., Park, J., Jin, B., Park, S., Jung, S. and Kim, J. (2022). Optimal Battery Aging Model based on Moore-Penrose Pseudo Inverse Matrix for Early Prediction of Remaining-useful-life on Lithium-ion Battery, Power Electronics Annual Conference, Jul. 5-7, Gyeongju, Korea, pp. 168-170.
- Kim, S., Park, S. and Kim, J. (2020). State of Health estimation based on Secondary Li-ion battery Electrochemical Modeling and Electrical Experiment, J ournal of IKEEE, 24(4), 1098-1103. https://doi.org/10.7471/ikeee.2020.24.4.1098
- Lee, D. and Yoon, D. (2012). Evaluating Modeling Heat Generation Behavior for Lithium-ion Battery using FEMLAB, Clean Technology, 18(3), 320-324. https://doi.org/10.7464/ksct.2012.18.3.320
- Lee, J. and Rew, J. (2024). Large Language Models-based Feature Extraction for Short-Term Load Forecasting, J ournal of Korea Society of Industrial Information Systems, 29(3), 51-65. http://doi.org/10.9723/jksiis.2024.29.3.051
- Lee, M., Park., J. and Kim, J. (2021). Prediction of Maximum Available Current of High Power Lithium-ion Battery based on Electrochemical Impedance Spectroscopy, Power Electronics Annual Conference, Jul. 6-8, Buan, Korea, pp. 348-350.
- Liu, R. (2022). Remaining Useful Life Prediction of Lithium-ion Batteries Using Multiple Kernel Extreme Learning Machine, Recent Advances in Computer Science and Communications, 15, 715-721. https://doi.org/10.2174/2666255813999201002152742
- Louppe, G. (2014). Understanding Random Forests: From Theory to Practice, Dissertation, Graduate School of Liege University, Liege, Belgium.
- Luca, G. D., Blasio, G. D., Gimelli, A. and Misul, D. A. (2024). Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles, Energies, 17(1), 202. https://doi.org/10.3390/en17010202
- Lundberg, S. and Lee, S. (2017). A Unified Approach to Interpreting Model Predictions, Proceedings of the Neural Information Processing Systems, Dec. 4-9, California, CA, USA, pp. 4768-4777.
- Maulud, D. H. and Abdulazeez, A. M. (2020). A Review on Linear Regression Comprehensive in Machine Learning, J ournal of Applied Science and Technology Trends, 1(4), 140-147. https://doi.org/10.38094/jastt1457
- Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatrain, X. and Gao, J. (2024). Large Language Models: A Survey, arXiv preprint, arXiv:2402.06196
- Nitta, N., Wu, F., Lee, J. and Yushin, G. (2015). Li-ion Battery Materials: Present and Future, Materials Today, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
- OpenAI. (2023). GPT-4 Technical Report, arXiv preprint, arXiv:2303.08774
- Park, J. (2022). A Study on Battery Remaining Useful Life Prediction based on Incremental Machine Learning with Battery Usage Patterns, Dissertation, Graduate School of Seoul National University of Science and Technology, Seoul, Korea.
- Park, K. and Yi, K. (2013). Voltage Balancing Circuit for Li-ion Battery System, J ournal of Korea Society of Industrial Information Systems, 18(5), 73-80. http://doi.org/10.9723/jksiis.2013.18.5.073
- Saeed, W. and Omlin, C. (2023). Explainable AI (XAI): A Systematic Meta-survey of Current Challenges and Future Opportunities, Knowledge-based Systems, 263, 110273. https://doi.org/10.1016/j.knosys.2023.110273
- Shi, Y., Yang, Y., Wen, J., Cui, F. and Wang, J. (2020). Remaining Useful Life Prediction for Lithium-ion Battery based on CEEMDAN and SVR, IEEE 18th International Conference on Industrial Informatics, Jul. 20-23, Warwick, United Kingdom, pp. 888-893.
- Son, Y. (2023). A Study on Accelerating Battery Aging Estimation through Machine Learning for Reduced Estimation Time, Thesis, Graduate School of Kookmin University, Seoul, Korea.
- Stroe, D. and Schaltz, E. (2018). SOH Estimation of LMO/NMC-based Electric Vehicle Lithium-ion Batteries Using the Incremental Capacity Analysis Technique. IEEE Energy Conversion Congress and Exposition, Sep. 23-27, Portland, OR, USA, pp. 2720-2725. https://doi.org/10.1109/ECCE.2018557998
- Wu, J., Kong, L., Cheng, Z., Yang, Y., and Zuo, H. (2022). RUL Prediction for Lithium Batteries Using a Novel Ensemble Learning Method, International Conference on the Energy Internet and Energy Interactive Technology, Mar. 25-27, Wuhan, China, pp. 313-326. https://doi.org/10.1016/j.egyr.2022.10.298
- Zhao, J., Tian, L., Cheng, L., Zhang, Y. and Zhu, C. (2022). Review on RUL Prediction Methods for Lithium-ion Battery, IEEE/IAS Industrial and Commercial Power System Asia, Jul. 8-11, Shanghai, China, pp. 1501-1505. https://doi.org/10.1109/ICPSAsia55496.2022.9949753
- Zheng, Z., Wei, J., Hu, X., Zhu, H. and Nevatia, R. (2024). Large Language Models are Good Prompt Learners for Low-Shot Image Classification, IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun, 17-21, Seattle, WA, USA, pp. 28453-28462.
- Zhou, L., Lai, X., Li, B., Yao, Y., Yuan, M., Weng, J. and Zheng, Y. (2023). State Estimation Models of Lithium-Ion Batteries for Battery Management System: Status, Challenges, and Future Trends, Batteries, 9(2), 131. https://doi.org/10.3390/batteries9020131
- Zhou, Y. and Huang, M. (2016). Lithium-ion Batteries Remaining Useful Life Prediction based on a Mixture of Empirical Mode Decomposition and ARIMA Model, Microelectronics Reliability, 65, 265-273. https://doi.org/10.1016/j.microrel.2016.07.151