Synthesis of $LiCoO_{2}$ Nanoparticles From Leach Liquor of Lithium Ion Battery Wastes by Flame Spray Pyrolysis

  • Lee Churl Kyoung (School of Material & System Engineering, Kumoh National Institute of Technology) ;
  • Chang Hankwon (Material Processing & Utilization Div., Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Hee Dong (Material Processing & Utilization Div., Korea Institute of Geoscience and Mineral Resources) ;
  • Sohn Jeong-Soo (Material Processing & Utilization Div., Korea Institute of Geoscience and Mineral Resources)
  • Published : 2005.12.01

Abstract

[ $LiCoO_{2}$ ] nanoparticles were synthesized from leach liquor of lithium ion battery waste using flame spray pyrolysis. Electrode Materials containing lithium and cobalt could be concentrated with thermal and mechanical treatment. After dissolution of used cathode materials of the lithium battery with nitric acid, the molar ratio of Li/Co in the leach liquor was adjusted at 1.0 by adding a fresh $LiNO_{3}$ solution. The nanoparticles synthesized by the flame spray pyrolysis showed clear crystallinity and were nearly spherical, and their average primary particle diameters ranged from 11 to 35 nm. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The $LiCoO_{2}$ powder was proved to have good characteristics as cathode active materials in charge/discharge capacity and cyclic performance.

페리튬이온전지로부터 회수된 코발트와 리튬 침출액으로부터 화염분부열분해법에 의하여 $LiCoO_{2}$ 나노분말을 제조하였다. 리튬 및 코발트 성분을 함유하는 전극물질은 열처리 및 기계적 처리에 의해 그 농도를 증가 시켰다. 리튬이온전지 양극물질을 질산으로 용해한 다음 침출액중 Li과 Co의 당량비가 1.0 되도록 $LiNO_{3}$로 조절하여 화염분무열분해용 전구체를 제조하었다. 화염분무열분해법에 의해 제조된 $LiCoO_{2}$ 분말의 평균입자크기는 전구체의 몰 농도가 증가하면서 증가되었으며, 화염온도 역시 입자의 크기를 증가시켰다. 변수실험 결과 $11{\~}35nm$ 크기의 결정형 $LiCoO_{2}$ 나노분말을 제조할 수 있었다 또한 나노 $LiCoO_{2}$의 전극재료로서의 가능성을 확인하기 위하여 충방전 특성 평가와 같은 전기화학적 분석을 수행하였다.

Keywords

References

  1. Sohn, J.-S., Lee, C. K. and Yang, D.-H. 2001: Recovery of Valuable Metals from Spent Batteries, 5th Workshop on Waste Treatment and Recycling, KIGAM, Daejeon, pp.76-9l
  2. Chosunilbo(Korea), October 10, 2001
  3. Sabin, M., 1997: Battery paste recycling process, U. S. Patent 5,690,718
  4. Shackle, R. and Calif, M. H., 1994 : Method for recycling metal containing electrical component, U.S. Patent 5,352,270
  5. Suita, O., 1994 : Cobalt recovery method, U. S. Patent 4,908,462
  6. William, Y. et al., 1982: Method and apparatus for neutralizing reactive material such as batteries, U. S. Patent 4,637,928
  7. Zhang, P., Yokoyama, T. and Itabashi, O., 1998: Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries, Hydrometallurgy, 47,259-271 https://doi.org/10.1016/S0304-386X(97)00050-9
  8. Koksbang, R., Barker, J., Shi, H. and Sadi, M.Y., 1996: Cathode Materials for Lithium Rocking Chair Batteries, Solid State Ionics, 84, 1-21 https://doi.org/10.1016/S0167-2738(96)83001-3
  9. Oh, LH., Hong, SA and Sun Y.K., 1997: Low-temperature Preparation of Ultrafine $LiCoO^{2}$Powders by the Sol-gel Method, J. Mater. Sci., 32, 3177-3182 https://doi.org/10.1023/A:1018650717723
  10. Chang, S.K., Kweon, H.J., Kim, B.K., Jung, D.Y. and Kwon, Y.U., 2002: Syntheses of $LiCoO^{2}$ for Cathode Materials of Secondary Batteries from Reflux Reactions at 130200 C, J. Power Sources, 104, 125-131 https://doi.org/10.1016/S0378-7753(01)00906-5
  11. Li, Y., Wan, C., Wu, Y., Jiang, C. and Zhu, Y, 2002: Synthesis and Characterization of Ultrafine $LiCoO^{2}$ Powders by a Spray-drying Method, J. Power Sources, 85, 294-298 https://doi.org/10.1016/S0378-7753(99)00159-7
  12. Santiago, E.I., Andrade, A.V.C., Paiva-Santos, C.O. and Bulhes, L.O.S, 2002: Structural and Electrochemical Properties of $LiCoO^{2}$Prepared by Combustion Synthesis, Solid State Ionics, 8831, 1-12
  13. Kilian, A. and Morse, T.F, 2001: A Novel Aerosol Combustion Process for the High Rate Formation of Nanoscale Oxide Particles, Aerosol Sci. Techriol., 34, 227-235 https://doi.org/10.1080/027868201300034880
  14. Limaye, A.U. and Helble, J.J., 2002: Morphological Control of Zircomia Nanoparticles Through Combustion Aerosol Synthesis, J. Am. Ceram. Soc., 85, 1127-1132
  15. Mdler, L., Kammler, H.K., Mueller, R. and Pratsinis, S.E., 2002: Controlled Synthesis of Nanostructured Particles by Flame Spray pyrolysis, J. Aerosol Sci., 33, 369-389 https://doi.org/10.1016/S0021-8502(01)00159-8
  16. Seo, D.S., Park, S.B., Kang, Y.C. and Choy, K.L., 2003: Formation of ZnO, MgO and NiO Nanoparticles from Aqueous Droplets in Flame Reactor, J. Nanoparticle Research, 5, 199-210
  17. Zachariah, M.R. and Huzarewicz, S., 1991: Aerosol Processing of YBaCuO Super-conductors in a Flame Reactor, J. Mat. Res., 6, 264-269 https://doi.org/10.1557/JMR.1991.0264
  18. Bickmore, C.R., Waldner, K.E., Treadwell, D.R. and Laine, R.M, 1996: Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide, J. Am. Ceram. Soc., 79, 1419-1423 https://doi.org/10.1111/j.1151-2916.1996.tb08608.x
  19. Lee, C.K. and Rhee, K.-I., 2002: Korea Patent 035664
  20. Lee, C.K. and Rhee, K.-I., 2003: Reductive acid leaching of cathodic active materials from lithium ion battery waste, Hydrometallurgy, 60, 5-10