• Title/Summary/Keyword: Lipschitz stability

Search Result 45, Processing Time 0.022 seconds

UNIFORMLY LIPSCHITZ STABILITY AND ASYMPTOTIC PROPERTY IN PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • CHOI, SANG IL;GOO, YOON HOE
    • The Pure and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • This paper shows that the solutions to the perturbed differential system $y^{\prime}=f(t, y)+\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$ have asymptotic property and uniform Lipschitz stability. To show these properties, we impose conditions on the perturbed part $\int_{to}^{t}g(s,y(s),Ty(s))ds+h(t,y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y).

UNIFORMLY LIPSCHITZ STABILITY OF PERTURBED NONLINEAR DIFFERENTIAL SYSTEMS

  • Choi, Sang Il;Lee, Ji Yeon;Goo, Yoon Hoe
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.273-284
    • /
    • 2017
  • In this paper, we study that the solutions to perturbed differential system $$y^{\prime}=f(t,y)+{{\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^{t}}g(s,y(s),T_1y(s))ds+h(t,y(t),T_2y(t))$$ have uniformly Lipschitz stability by imposing conditions on the perturbed part ${\int_{t0}^{t}}g(s,y(s),T_1y(s))ds,h(t,y(t),T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using integral inequalities.

Consequences of Lipschitz Stability

  • Choi, Sung Kyu;Koo, Ki Shik;Lee, Keon-Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.65-74
    • /
    • 1992
  • In this note, we show that the ${\omega}$-limit mapping is continuous and the Lipschitz constants vary continuously if the flow (x, ${\pi}$) is Lipschitz stable. Moreover we analyse the ${\omega}$-limit sets under the generalized locally Lipschitz stable flows.

  • PDF

ON STABILITY OF NONLINEAR NONAUTONOMOUS SYSTEMS BY LYAPUNOV'S DIRECT METHOD

  • Park, Jong-Yeoul;Phat, Vu-Ngoc;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.805-821
    • /
    • 2000
  • The paper deals with asymtotic stabillity of nonlinear nonautinomous systems by Lyapunov's direct method. The proposed Lyapunov-like function V(t, x) needs not be continuous in t and Lipschitz in x in a Banach space. The class of systems considered is allowed to be nonautonomous and infinite-dimensional and we relax the boundedness, the Lipschitz assumption on the system and the definite decrescent condition on the Lyapunov function.

  • PDF

ALMOST STABILITY OF ISHIKAWA ITERATIVE SCHEMES WITH ERRORS FOR φ-STRONGLY QUASI-ACCRETIVE AND φ-HEMICONTRACTIVE OPERATORS

  • Kim, Jong-Kyu;Liu, Ze-Qing;Kang, Shin-Min
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.267-281
    • /
    • 2004
  • In this paper, we establish almost stability of Ishikawa iterative schemes with errors for the classes of Lipschitz $\phi$-strongly quasi-accretive operators and Lipschitz $\phi$-hemicontractive operators in arbitrary Banach spaces. The results of this paper extend a few well-known recent results.

EXISTENCE AND EXPONENTIAL STABILITY OF ALMOST PERIODIC SOLUTIONS FOR CELLULAR NEURAL NETWORKS WITHOUT GLOBAL LIPSCHITZ CONDITIONS

  • Liu, Bingwan
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.873-887
    • /
    • 2007
  • In this paper cellular neutral networks with time-varying delays and continuously distributed delays are considered. Without assuming the global Lipschitz conditions of activation functions, some sufficient conditions for the existence and exponential stability of the almost periodic solutions are established by using the fixed point theorem and differential inequality techniques. The results of this paper are new and complement previously known results.

PERTURBATIONS OF FUNCTIONAL DIFFERENTIAL SYSTEMS

  • Im, Dong Man
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.225-238
    • /
    • 2019
  • We show the boundedness and uniform Lipschitz stability for the solutions to the functional perturbed differential system $$y^{\prime}=f(t,y)+{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{t_0}}^t}g(s,y(s),\;T_1y(s))ds+h(t,y(t),\;T_2y(t))$$, under perturbations. We impose conditions on the perturbed part ${\int_{t_0}^{t}}g(s,y(s)$, $T_1y(s))ds$, $h(t,y(t)$, $T_2y(t))$, and on the fundamental matrix of the unperturbed system y' = f(t, y) using the notion of h-stability.

Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs (미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계)

  • Song, Bongsob;Lee, Jimin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

STABILITY IN VARIATION FOR NONLINEAR VOLTERRA DIFFERENCE SYSTEMS

  • Choi, Sung-Kyu;Koo, Nam-Jip
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.101-111
    • /
    • 2001
  • We investigate the property of h-stability, which is an important extension of the notions of exponential stability and uniform Lipschitz stability in variation for nonlinear Volterra difference systems.

  • PDF