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ALMOST STABILITY OF ISHIKAWA
ITERATIVE SCHEMES WITH ERRORS
FOR ¢-STRONGLY QUASI-ACCRETIVE

AND ¢-HEMICONTRACTIVE OPERATORS

JONG KyU KIM, ZEQING L1u AND SHIN MIN KANG

ABSTRACT. In this paper, we establish almost stability of Ishikawa,
iterative schemes with errors for the classes of Lipschitz ¢-strongly
quasi-accretive operators and Lipschitz ¢-hemicontractive opera-
tors in arbitrary Banach spaces. The results of this paper extend
a few well-known recent results.

1. Introduction

Let X be an arbitrary Banach space, X* its dual space and (z, f) the
generalized duality pairing between z € X and f € X*. The normalized
duality mapping J : X — 2% is defined by

J(z) ={f € X*: Re(z, f) = |l=|[Ilf [, £l = ll=ll}, =€ X.

DEerFINITION 1.1. ([1], [4], [16]) Let T be an operator with domain
D(T) and range R(T) in X. Let F(T) ={z € D(T): Tx =z}, N(T) =
{z € D(T) : Tz = 0} and I denote the identity operator on X.

(1) T is said to be strongly accretive if there exists a constant k €
(0,1) such that for all z,y € D(T), there exists j(z—y) € J(z—~y)
satisfying

Re(Tz — Ty, j(z —y)) > kllz — yl|*;
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(ii) T is said to be ¢-strongly accretive if there exists a strictly in-
creasing function ¢ : [0,00) — [0,00) with ¢(0) = 0 such that
for all z,y € D(T), there exists j(z — y) € J(x — y) satisfying

Re(Tx — Ty, j(z —y)) > ¢(llz -y 2 — yll;

(iii) T is said to be strongly quasi-accretive if N(T) # 0 and if there
exists a constant k£ € (0, 1) such that for all z € D(T),y € N(T),
there exists j(z — y) € J(z — y) satisfying

Re(Tz — Ty, j(z — y)) > kil — yll*;

(iv) T is said to be ¢-strongly quasi-accretive if N(T) # ( and if
there exists a strictly increasing function ¢ : [0,00) — [0,00)
with ¢(0) = 0 such that for all z € D(T),y € N(T), there exists
j(x —y) € J(z — y) satisfying

Re(Tz — Ty, j(x — y)) = ¢(lz — y)llz - yl;

(v) T is said to be strongly pseudocontractive (p-strongly pseudo-
contractive, strictly hemicontractive, ¢-hemicontractive, resp.) if
I —T is strongly accretive (¢-strongly accretive, strongly quasi-
accretive, ¢-strongly quasi-accretive, resp.).

Let K be a nonempty convex subset of an arbitrary Banach space
X and T : K — K be an operator. Assume that x¢p € K and 2,41 =
f(T, z,,) defines an iterative scheme which produces a sequence {z,}3
C K. Suppose, furthermore, that {z,}>2, converges strongly to ¢ €
F(T) # 0. Let {yn}3>, be any sequence in K and put €, = ||yp+1 —
Tl

DEFINITION 1.2. ([8-10], [17]) (i) The iteration scheme {z,}22, de-
fined by 2,41 = f(T,z,) is said to be T-stable on K if lim,, o, €, =0
implies that lim,, e ¥n = ¢;

(ii) The iteration scheme {z,}52 defined by 41 = f(T, zy) is said
to be almost T-stable on K if ZZ‘;O €n, < 00 implies that lim,, o, yn = .

It is easy to verify that an iterative scheme {z,}5%, which is T-stable
on K is almost T-stable on K. Osilike [17] proved that the converse is
not true.

Let us recall the following three iterative processes due to Mann [15],
Ishikawa [11] and Xu [22], respectively.
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DEFINITION 1.3. Let K be a nonempty convex subset of an arbitrary
Banach space X and T : K — K be an operator.

(i) For any given zg € K the sequence {z,}2 defined by

{ Tptl = (1 - a/n)mn + anTyna
Yn = (1 - bn)xn + bnTxna nz O,

is called the Ishikawa iterative sequence, where {a,}5%, and
{b,}22, are real sequences in [0,1] satisfying appropriate con-

ditions.
(ii) If b, = 0 for all n > 0 in (i), then the sequence {z,}52, defined
by
29 € K, 241 = (1 —ap)z, + anTzy, n >0,

is called the Mann iterative sequence.
(iii) For any given xo € K the sequence {z,}>2, defined by

{ Tnil = GnTn + bnTyn + Cpln,
Yn = ahzp + 0, Txy + ¢l vn, n >0,

where {u,}22, and {v,}%2, are arbitrary bounded sequences
in K and {an}3Zo, {n}nZo, {¢n}nZor {an}ile, {bn}Rlo and
{c},}32., are real sequences in [0,1] such that a, + b, + ¢, =
a, + b, +c, =1 for all n > 0, is called the Ishikawa iterative
sequence with errors.

(iv) If b}, = ¢/, = 0 for all n > 0 in (iii), then the sequence {z,}22,
defined by

20 € K, Znt1 = anTn + 0, Txp + Cuun,n >0,
is called the Mann iterative sequence with errors.

Many stability results for certain classes of nonlinear mappings have
been established by several authors (see, [8-10], [17]). Rhoades [19]
proved that the Mann and Ishikawa iterative methods may exhibit differ-
ent behaviors for different classes of nonlinear mappings. Harder-Hicks
[10] revealed the importance of investigating the stability of various it-
erative procedures for various classes of nonlinear mappings. Harder [8]
established applications of stability results to first order differential equa-
tions. In [17], Osilike proved that certain Ishikawa iterative sequences
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are almost stable for Lipschitz ¢-strongly pseudocontractive operators
and Lipschitz ¢-strongly accretive operators in real Banach spaces.

These classes of nonlinear operators in Definition 1.1 have been stud-
ied by various researchers (see, [1-7], [12-14], [16-22]). Osilike [16] proved
that the class of strongly pseudocontractive operators is a proper sub-
class of the class of ¢-strongly pseudocontractive operators, and pointed
out that the class of ¢-strongly pseudocontractive operators with a fixed
point is a proper subclass of the class of ¢-hemicontractive operators.
Chidume-Osilike [4] proved that each strongly pseudocontractive opera-
tor with a fixed point is strictly hemicontractive, but the converse does
not hold in general. It is known that any strictly hemicontractive oper-
ator is ¢-hemicontractive.

On the other hand, Chidume [1] obtained the Mann iterative method
can be used to approximate fixed points of Lipschitz strongly pseudo-
contractive operators in Ly(or l,) spaces for p € [2,00). Afterwards,
authors extended the result in many directions. Schu [20] generalized
the result in {1] to real Banach spaces with property (U, A\,m + 1,m).
In [16] and (18], Osilike extended the result in [1] to both Lipschitz
¢-strongly pseudocontractive operators, Lipschitz ¢-strongly accretive
operators or Lipschitz ¢-hemicontractive operators and real g-uniformly
smooth Banach spaces or real Banach spaces.

In this paper, we establish the almost stability of Ishikawa iterative
schemes with errors for the classes of Lipschitz ¢-strongly quasi-accretive
operators and Lipschitz ¢-hemicontractive operators in arbitrary Banach
spaces. We prove that the class of strictly hemicontractive operators is a
proper subclass of the class of ¢-hemicontractive operators. The results
of this paper extend the corresponding results in [1], [16-18] and [20].

LEMMA 2.1. [13] Let {an }520, {Bn 152, and {wn }52, be nonnegative
sequences satisfying

On41 S (1 + ﬂn)an + Wn, n Z 0,

o o
Z/Bn < oo and an < oo.
n=0

n=0
Then {an, }5° o is bounded.
LEMMA 2.2. [21] Let {a }S2 o and {Bn }32, be nonnegative sequences
satisfying
Opy1 < o + Bns n >0,
and Y oo By < co. Then limy, o ay exists.
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LEMMA 2.3. Suppose that ¢ : [0,00) — [0, 00) is a strictly increasing
function with ¢(0) = 0. Assume that {a, }22g, {n} g, {1} and
{wn}S2, are nonnegative sequences satisfying

o0 o0 x
(2.1) Z’yn = o0, Zﬂn < 00, an < 00,
n=0 n=0 n=>0

and

¢(an+1)
< ap + Bray +w
1+an+1+¢(an+1)’yn _ n 6” n n

for all n > 0. Then lim,_, o, o, = 0.
PrOOF. It follows from (2.2) that
(2.3) ont1 < (1+ Bn)om + wh, n > 0.

Lemma 2.1, (2.1) and (2.3) yield that there exists M > 0 such that
oy < M for all n > 0. Using (2.3), we have

ony1 < ap+ (Mg, +w,), n>0.

(2.2) any1+min{on, eni1}

From the above inequality, (2.1) and Lemma 2.2, we infer that lim,,_, o,
= r > 0. Suppose that r > 0. Then there exists a positive integer N
such that

1 3
(2.4) 5" <a, < 2" n > N.
In view of (2.2) and (2.4), we obtain that for any n > N,
§¢(%) ¢(an+1)

Yn S min{anaan-f—l} n

14+ %T+¢(%T) 14+ ap4+1 +¢(an+1)
S Gn — Qptl + (M,Bn +w'n)7

which implies that

1+3 T+¢(2 Z7nSaN+MZIBn+an<OO

which is impossible. Hence lim,,— o, o = 0. Th1s completes the proof.[]

REMARK 2.1. The Lemma in [7] and the Lemma in [18] are special
cases of Lemma 2.1.

LeEMMA 2.4. [14] Let X be a Banach space and z,y € X. Then
lzll < ||z +ty|| for each t > O if and only if there exists j(z) € J(z) such
that Re(y,j(x)) > 0.



272 Jong Kyu Kim, Zeqing Liu and Shin Min Kang
3. Convergence and almost stability

In the sequel, d, and d], denote b, + ¢, and b}, + ¢, respectively.
Let L, = 1+ L, L > 1 denote the Lipschitzian constant of T, and

— __¢ll==y|D
A(@,Y) = F=yTrademyn for each 2,y € X.

THEOREM 3.1. Let X be a Banach space and let T : X — X be a
Lipschitz ¢-strongly quasi-accretive operator. Suppose that {a,}5%,,
{ba}so, {eatior {al}oo, {B}5o and {c}sey are arbitrary se-
quences in [0, 1] satisfying

(3.1) an+dp=a,+d, =1, n>0
o0
(3.2) Z by, = 00;
n=0
(3.3) ch < 00, Zbi < 00, Z bnd,, < co.
n=0 n=0 n=0

Define S : X — X by St = ¢ —Tx for all £ € X. Assume that
{un}2y and {v, 2%, are arbitrary bounded sequences in X. Suppose
that {z,}22, is the sequence generated from arbitrary xo € X by
(3.4) { Zn = QL Tn + b, STy + ), up,

Tyl = QnZpn + b, Sz, + cruy,, n 2> 0.

Let {y,}2°, be any sequence in X and define {€,}52 by
(3.5) Wy = a;yn + b;Syn + C;Um €n = ”yn—l—l _pn”a n >0,

where pn, = anyn + by Swy + chun,. Then
(i) The sequence {x,}° , converges strongly to the unique zero q of
T;
(i) llyn+1 — 4l
< [1 = A(Pn, Q)dnlllyn — all + (2 + L + L2)d5,
+ Ludpdy, -+ Ldpby, + Lidnbn + LI(1+ dn)ea]llyn — al
+(2+ Li)enllun — gl + Lucl,[d2 + (1 + dn)en
+ (L4 Lu)dn]llvn — qll + €n, 1 >0;
(iii) D07 gen < oo implies that lim, oo yn = g, so that {z,}52 is
almost S-stable on X;
(iv) limy,— oo yn = q implies that lim,, o €, = 0.
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PROOF. Since T is ¢-strongly quasi-accretive, it follows that 7" has
a unique zero. Let ¢ be the zero of T. Then Sq = ¢q. From (3.1) and
(3.4), we get that

lon - all < (1~ dy)llen = al + Bl S — all + e —
< Lullzn — gl + e llvn = gl

and
lwn — qll < (1 —=d)|lyn — qll + 8,115y — all + ¢ llvn — gl

< Lullyn — qll + cpllvn — gl
for all n > 0. Using (3.1) and (3.4) again, we obtain that
T = (1 +dnA(Zni1,9)) 20y +dn(l — S — A(@n41,9))Tnsa
(3.8) + d2(zy — Szn) — (L +dp)en(u, — Szy,)
+ dn(STpt1 — Szn)

(3.7)

and

39)  g=01+dnATn+1,9)q+dn(l = 5 — A(Zny1,9))g

for all n > 0. It follows from (3.8), (3.9) and Lemma 2.4 that for all
n >0,

“xn - CIH

d
> 11 nA n+1, n - 7 B
> [ +d (l’ +1 q)]“a: +1 q+ 1+ dnA(anrl,Q) [(I >

— A(@nt+1,9))Zn41 — (L = 5 — AlZn1,))d]l]
— d |z — Sznll — (14 dn)enllun — Szall — dnl|STpr1 — Szall
> 1+ dpA(@nsr, @lllents — gll — dillen — Szal)
= (L +dn)enllun — Szn|| = dnLillzns1 — 2al|
which implies that for all n > 0,
1+ dnA(zni1, @lllznss — qf
< Nz — gl + d3 |z — Sznll + (1 + dn)enllun — Sza]|
+ Ludn||Znt1 = zn]
(3.10) < (L+d3)||lzn — gll + [d% + (1 + dn)en]|Szn — g
+ (1 +dn)enllun — gl + Ludn(bnl|Szn — znll + cpllun — znl|
+ by |Szn — 2| + g flvn — zal))
< lzn = qll + Bullzrn — gl +wn
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by (3.4) and (3.6), where
Brn = (1+ Ly + L2)d2 + L.dyd,, + L2d,bl, + L3d,by + L2(1 + dy,)cn,
and
wn = [1+ (14 Li)dplenllun — ql|
+ Lucl[d2 + (1 + dp)cp + Ledpby + dy)ljvn — 4|

for all n > 0. (3.3) ensures that Y o~ (B, < 0o and Y oo jw, < 00.
In view of Lemma 2.3, (3.2) and (3.3), we conclude immediately that

limy, oo Tn = q.
From (3.1) and (3.5), we get that for all n > 0,

Yn = (L + dnA(pn, q))pn + dn(I — S — A(pn, q))Pn
(3.11) + 2 (yn — Swy) — (1 + dn)en(un — Swy)
+ dn(Sp, — Swy,)
and
(3.12) q= (14 dnA(pn,q))q+dn(I — S — A(pn,q))q.
It follows from Lemma 2.4, (3.11) and (3.12) that for all n > 0,
llyn — gl
> [1+ daApn, @)llpn — g + ——
il K03 pn7q pn q 1 +A(pn,q)dn
— (I =8 = Alpn, 0)alll - B llyn — Swn|
— (1 +dn)en|lun — Swy|| = dr||SPn — Swy||

> [1+ dnA(Pn, )lllpn — gll = 2 llyn — Swal
— (1 +dn)enllun — Swall = Ladn|lpn — wall,

(I =5 = A(pn, 9))Zn+

which means that

1+ dnA(Pn, )lllpn — 4l
< fyn —qll + di“yn — Swp|| + (1 + dn)en||un — Swy||
+ L*dn”pn - wn”
< (1 +d2)llyn — qll + [d2 + (1 + dn)en][[Swn — 4|
+ (1 +dn)cnllun — qll + L*dn(bn||Swn — Ynll + cnllun — nll
+ 0 1SYn — ynll + cnllvn — yall)
<[+ 1+ Lo+ LYd2 + Lodndl, + L2d, b, + L3d,b,
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+ LI(1+dp)enllyn — gll + [L + (1 + La)dplenlun — 4l
+ L.c[d? + (14 dn)en + Ludnby + dp)|lvn — 4.
Hence, we have
(3.13)

o — 4l
1

= T+ Alpm a)ds
+ Lidnbn + Lz(l + dp)en]llyn — gl + [1 + (1 + Li)dn]enllun —qll
+ Lucl[d2 + (14 dn)cn + Ladnby + dn]llvn — 4|

< (1= A(pn, )dnlllyn — all + (2 + L + LD)d5, + Ludndy, + Lidnby,
+ Lidnbn + Li(l + dn)cn]“yn - QH + (2 + L*)cn”un - (1“
+ Lucp[d + (14 dp)en + (14 La)dy]||lvn — g

1+ 1+ L, + LH)d2 + L.d,d, + L?d,b.
" n n

for any n > 0. Thus (3.13) yields that
(3.14)
ll9n+1 = qll < [1 = Alpn, @)dnlllyn — 4

+[(2 + Ly + L2)d? + Lodyd., + L2d,b, + L3dnbn
+ L2(1 + dn)enlllyn — qll + (2+ Lu)enllun — ql)
+ L*ch[di + (1 + dn)cn + (1 + L*)dn]“% - ‘I“ +€n
for all n > 0.
Suppose that >0 €, < co. Let
= (24 Ly + L2)d2 + Lyd,d., + L2d,b), + L3d,b,
+ L2(1 4 dyn)cp,
Sp = (2 + L*)Cn““n - QII
+ Lucpldl, + (14 dr)en + (1 + La)da][lvn — gl + €n

for all n > 0. Then > > 7, < 0o and Y oo 5 sp < 00 and

[gn+1 —all < (L +70)llyn — gll + 50, n20.

It follows from Lemma 2.1 that {|lyn — ¢q||}5%, is bounded. Hence there
exists a constant M > 0 such that

lyn —al <M, n=0



276 Jong Kyu Kim, Zeqing Liu and Shin Min Kang

and
lynt1 —all < llyn — gl + (Mrn +5,), n2>0.

Lemma 2.2 and the above inequality ensure that
(3.15) lim [ly, —gll=72>0.
n—oo

We assert that r = 0. If not, then » > 0. Note that {u,}5%, and
{vn}52 are bounded. Then

B :=(1+4 LM + (1 + L.) max{sup{||u, — q|| : n > 0},
sup{||vn, — ¢q|| : » > 0}} < 0.

Observe that
(3.16)
P — all < anllyn — gll + bnllSwn — gl + callun — gl

< (@n + b L)y — all + callun — gll + Lubacyllvn — gl
<B

and

(3.17)
lpn — gl = anllyn — qll = bullSwn — q|| = callun — 4|l

> (an — b L) lyn — all — cnllun — gll = Lubncy,|lvn — 4|
for all n > 0. From (3.3), (3.16) and (3.17), we obtain that
(3.18) Jim [pn —qll =7

Using (3.15) and (3.18), we know that there exists a positive integer NV
such that

(3.19) max{lpn ~ al, lm — all} 2 3, 02 N.

From (3.14) and (3.19), we conclude that

2() . #(llpn — all)
L+M+¢(M) ™ = 1+ |lpn —gll + ¢(llpn — 4l
< lyn — all = lynt1 — qll + 7o M + sn,

dnllyn — ¢
) I I
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for all n > N. This means that

_e(3) 5‘3

[e o] o0
< — M n n < O0.
S Ty lyw = all +M Y rnt Y sn < 0o

n=N n=N n=N

This is a contradiction to Y o. i d, = co. Therefore r = 0. That is,
limy, oo Yn = ¢.
Suppose that lim, .o, ¥» = ¢. Then

en < |Ynt1 —qll + (an + anf)”yn —q|
+ cnllun — gl + L*bnc;”'un —q||
— 0

as n — 00. Hence limy, . €, = 0. This completes the proof. i

Similarly we have the following results.

THEOREM 3.2. Let X be a Banach space and letT : X — X be a Lip-
schitz ¢-strongly accretive operator. Suppose that the equation Tx = f
has a solution for each f € X. Define S: X - X by Sc=f+z—-Tx
for each # € X. Assume that {un}q, {Un}SZ0, {Tn}olos {2n}o0,

{yn}n Q {wn}n~01 {pn}n—07 {an} =0 {bn}n—()? {cn}n =0 {a’n}n—()’
{6,352, and {c},}32 , are as in Theorem 3.1. Then the sequence {z, }52

converges strongly to the unique solution q of the equation Tx = f and
(ii)~(iv) in Theorem 3.1 hold.

THEOREM 3.3. Let K be a nonempty convex subset of a Banach
space X and let T : K — K be a Lipschitz ¢-hemicontractive operator.
Suppose that {u,}°2 and {v,}5, are arbitrary bounded sequences in

K. Let {an}n:Oa {b }n:07 {c7l}n=0) {an}nzor {b;L}TL:O and {cn}n=0 be
as in Theorem 3.1. Assume that {z,}22 is the sequence generated from
an arbitrary g € K by

{ 2n = al Ty + b, T2y + chup,
Tpt1 = An&pn + 0, T2, + cpty, n > 0.

Let {y,}2.o be any sequence in K and define {€,}22, by
Wn = apYn + U Tyn + cvn, € = [[Yns1 —pull, 720,

where p, = anyn + b,Tw, + chti,. Then
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(1) The sequence {x,}32, converges strongly to the unique fixed point
g of T;

(ii) Yyn+1 — qll
< [1 = A(Pn, Qdnlllyn — gll + [(2+ L+ L2,
+ Ld,d/, + L%d,bl, + L3d, by, + L*(1 + dy)enlllyn — 4l
+ (24 L)enllun — gl + Le[d2 + (1 + dp)en
+ (14 L)dn)llvn — q|| + €n, n=>0;

(iil) -2  €n < 0o implies that limy, o Yn = g, so that {z,}32, is
almost T
-stable on K;
(iv) limy,— 00 Yn = q implies that lim,_, €, = 0.

REMARK 3.1. Theorem 3.2 and Theorem 3.3 are generalizations and
improvements of Theorem 2 and Theorem 1 in [17], respectively. On
the other hand, the convergence results in Theorem 3.2 and Theorem
3.3 extend Theorem in [1], Theorem 1 and Theorem 2 in [16], Theorem
1 and Theorem 2 in [18] and Theorem 2 in {20] in the following sense.

(a) The Mann iterative scheme in [1] and the Ishikawa iterative scheme

in [16, 18, 20| are replace by the more general Ishikawa iterative

scheme with errors;

(b) The L, (or lp,) space in [1], the real g-uniformly smooth Banach

space in [16] and the real Banach space with property (U, A\, m,m+1)

are replaced by arbitrary Banach space;

(c) The boundedness assumptions of the subset K in [I] and the

sequences {T'z,}52; and {Tyn}5% in [20] are removed;

(d) The condition 3, < ag~! in (16] is superfluous.

REMARK 3.2. The following example reveals that Theorem 3.3 ex-
tends substantially Theorem in [1], Theorem 2 in [16], Theorem 1 in [17],
Theorem 2 in [18] and Theorem 2 in [20], and that the class of strictly
hemicontractive operators is a proper subclass of ¢-hemicontractive op-
erators.

EXAMPLE 3.1. Let X = (—o00,00) with the usual norm and K =

[0,00). Define an operator T': K — K by Tz = 175; for all z € K. Let

@ : [0,00) — [0,00) be a function satisfying ¢(t) = ﬁzz—t for all t > 0.
Clearly, F(T) = {0} and

[l — yll

T2 =Tyl = G550 12y

) S“x*yni xayEK'
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Hence T is a Lipschitzian mapping with L = 1. Note that forall z,y € K,
(T2 = Ty, j(z = y)) = (marrgm J(@ = )
YIE Y =T oy (1 2y T Y

eyl
(1+2z)(1+2y)

For a given k € (0,1), there exists z = l—gk—k € K such that

=]

220 s k)
1422 > Hx“

{Tz,j(z)) =

Therefore T is neither strictly hemicontractive nor strongly pseudocon-
tractive. Observe that for all z,y € K,

o — ylI? + lle — wi®
1+2)z -yl

= llz =yl ~ ¢(llz — yiDllz -yl

(Tz — Tz, j(z —y)) <

That is, T is ¢-strongly pseudocontractive. Since F(T') # 0, it follows
that T is ¢-hemicontractive. Set

an=1-24n)"1=2+n2)7Y, by=02+n)71 c,=(24nH)7
a, =1-22+n)"Y2 b =c,=(2+n) "3

for all » > 0. Then all the assumptions of Theorem 3.3 are fulfilled.

However, the conditions of Theorem in [1], Theorem 2 in [16], Theorem
1 in [17], Theorem 2 in [18] and Theorem 2 in [20] are not all satisfied.
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