The P. fragi lipase overexpressed in E. coli as a fusion protein of 57 kilodalton (kDa) has been purified through glutathione-agarose affinity chromatography by elution with free glutathione. The general properties of the purified GST-fusion protein were characterized by observing absorbance of released p-nitrophenoxide at 400 nm which was hydrolyzed from the substrate p-nitrophenyl palmitate. The optimum condition was observed at 25 $^{\circ}C$, pH 7.8 with 0.4 ${\mu}g$ of protein and 1.0 mM substrate in 0.6% (v/v) TritonX-100 solution. Also the lipase was activated by Ca+2, Mg+2, Ba+2 and Na+ but it was inhibited by Co+2 and Ni+2. pGEX-2T containing P. fragi lipase gene as expression vector was named pGL191 and used as a template for the site-directed mutagenesis by sequential PCR steps. A Ser-His-Asp catalytic triad similar to that present in serine proteases may be present in Pseudomonas lipase. Therefore, the PCR fragments replacing Asp217 to Arg and His260 to Arg were synthesized, and substituted for original fragment in pGL19. The ligated products were transformed into E. coli NM522, and pGEX-2T harboring mutant lipase genes were screened through digestion with XbaI and StuI sites created by mutagenic primers, respectively. No activity of mutant lipases was observed on the plate containing tributyrin. The purified mutant lipases were not activated on the substrate and affected at pH variation. These results demonstrate that Asp217 and His260 are involved in the catalytic site of Pseudomonas lipase.
Experiments on the process development for the concentration of polyunsaturated fatty acid (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from fish oil by using acyl chain specificity of Candida cylindracea lipase were performed. Five kinds of oils were hydrolyzed with Candida cylindracea lipase. Among then, Candida cylindracea lipase just had low activity on the PUFAs-rich fish oil. After the hydrolysis of fish oil, free fatty acid was removed and fatty acid components of glyceride mixtures were analyzed. When the hydrolysis was about 70%, the DHA content in the glyceride mixture was about three times more than that in the original fish oil. The EPA and stearidonic acid contents in the glyceride mixtures, however, were similar to that of the original fish oil. In this work, these results showed that the concentration process of PUFAs by using the acyl chain specificity of Candida cylindreacea lipase was effective in producing glycerides that contained a high concentration of PUFAs in good yield.
Park, Doo-Sang;Oh, Hyun-Woo;Heo, Sun-Yeon;Jeong, Won-Jin;Shin, Dong-Ha;Bae, Kyung-Sook;Park, Ho-Yong
Journal of Microbiology
/
v.45
no.5
/
pp.409-417
/
2007
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and $60^{\circ}C$. A broad range of lipase substrates, from $C_4\;to\;C_{18}$ p-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was p-nitrophenyl caproate ($C_6$). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family 1.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, $Ser^{131},\;His^{330},\;and\;Asp^{308}$, which composed the catalytic triad of the enzyme.
This study was carried out to examine the effect of lipase on the removal of tripalmitin in the various conditions of washing. The relations between the removal and the hydrolysis of tripalmitin by lipase were discussed. The hydrolysis characteristics of lipase were examined by a colorimetric determination of liberated fatty acids as a new assay of lipase in reverse micelies. The hydrolysis of tripalmitin by lipase was increased with the increase of reaction time and reaction above lipase concentration 150mg/l pH at reaction temperature 4$0^{\circ}C$.
Using the monomolecular film technique, we compared the interfacial properties of Staphylococcus simulans lipase (SSL) and Staphylococcus aureus lipase (SAL). These two enzymes act specifically on glycerides without any detectable phospholipase activity when using various phospholipids. Our results show that the maximum rate of racemic dicaprin (rac-dicaprin) hydrolysis was displayed at pH 8.5, or 6.5 with Staphylococcus simulans lipase or Staphylococcus aureus lipase, respectively The two enzymes interact strongly with egg-phosphatidyl choline (egg-PC) monomolecular films, evidenced by a critical surface pressure value of around $23\;mN{\cdot}m^{-1}$. In contrast to pancreatic lipases, $\beta$-lactoglobulin, a tensioactive protein, failed to inhibit Staphylococcus simulans lipase and Staphylococcus aureus lipase. A kinetic study on the surface pressure dependency, stereoselectivity, and regioselectivity of Staphylococcus simulans lipase and Staphylococcus aureus lipase was performed using optically pure stereoisomers of diglycerides (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-sn-dicaprin) that were spread as monomolecular films at the air-water interface. Both staphylococcal lipases acted preferentially on distal carboxylic ester groups of the diglyceride isomer (1,3-sn-dicaprin). Furthermore, Staphylococcus simulans lipase was found to be markedly stereoselective for the sn-3 position of the 2,3-sn-dicaprin isomer.
A bacterial strain SC-22 which produced alkaline lipase was isolated from salf-fermented shrimps. Strains SC-22 was identified as Staphylococcus xylosus. An alkaline lipase excreted by Staphylococcus xylosus SC-22 was purified by ammonium sulfate predipitation and column chromatography on Sephadex G-100 and DEAE-Sephace. The specific activity of purified lipase was 756U/mg of protein with 17.2% yield. The approximate molecular weight of the purified enzyme was 47 kDa. The partially purified lipase preparation had and optimum temperature of 4$0^{\circ}C$, an optimum pH of 8.0, and a stable of 5~10. Lipase activities were enhanced by salt ions such as $Ca^{2+}$, $Mg^{2+}$,N $a^{2+}$ while inhibited remarkably by heavy metal ions, C $u^{2+}$ and P $b^{2+}$.EX> 2+/.
The expression, purification, and characterization of cold-adapted lipase from the psychrophile, Janthinobacterium sp. were investigated. The gene encoding lipase from Janthinobacterium sp. PAMC 25641 was cloned into a pET28a(+) vector and heterologously expressed in Escherichia coli BL21 (DE3). The amino acid sequence deduced from the nucleotide sequence (930 bp) corresponded to a protein having 309 amino acid residues with a molecular weight of 32.7 kDa and a pI of 5.55. Recombinant E. coli harboring the Janthinobacterium lipase gene were induced by addition of isopropyl-${\beta}$-D-thiogalactopyranoside. $Ni^{2+}$-NTA affinity chromatography was used to purify the lipase, which had a specific activity of 107.9 U/mg protein. The effect of temperature and pH on the activity of lipase was measured using p-nitrophenyl octanoate as a substrate. The stability of the lipase at low temperatures indicated it is a cold-adapted enzyme. The lipase activity was increased by $Na^{2+}$, $Mg^{2+}$, and $Mn^{2+}$, and decreased by $Zn^{2+}$ and $Co^{2+}$. Analysis of the lipase activity using various p-nitrophenyl esters showed a strong preference toward short acyl chains of the esters, indicating the ability of the cold-adapted lipase to hydrolyze short-chain esters.
A producer of thermophilic extracellular lipase, Geobacillus kaustophilus DSM 7263, was selected from various microorganisms of the Geobacillus genus. We investigated optimum conditions for mass production of G. kaustophilus lipase. Among the different natural oil media, olive oil was optimal for enzyme production. The maximum amount of enzyme production was obtained when G. kaustophilus was grown in a medium containing 0.5% olive oil as a carbon source. The pH and temperature for optimal growth were pH 8.0 and $55^{\circ}C$, respectively, while the optimum pH and temperature for lipase production were pH 6.0 and $50^{\circ}C$, respectively. In the presence of $Mg^{2+}$ and $Mn^{2+}$, lipase production was dramatically enhanced by 247% and 157%, respectively, whereas enzyme production was inhibited by $Zn^{2+}$, $Cu^{2+}$, and $Cd^{2+}$. The addition of 0.1% (v/v) triton X-100 increased lipase production and cell growth when compared to the negative control.
This study was performed to investigate the possible use of Eisenia bicyclis (EB) ethanol extract to inhibit activity against lipase. In tests, the lipase inhibitory activity of EB ethanol extract was noted as being 43, 27, and 24% at concentrations of 5, 2.5, and 1 mg/ml, respectively. Isolation was carried out by liquid and liquid extraction, silica-gel column chromatography, and HPLC. The results showed that the lipase inhibitory activity of the ethyl acetate (EA) fraction from EB ethanol extract exhibited the strongest lipase inhibitory activity with an $IC_{50}$ value of 1.31 mg/ml. The EA fraction was separated using silica-gel column chromatography and we obtained 22 sub-fractions. Amongst them, the EA1 fraction showed the highest lipase inhibitory activity with an $IC_{50}$ value of 0.54 mg/ml. Eight peaks were obtained from the EA1 fraction by HPLC. Fraction 5 also showed a strong lipase inhibitory activity with an $IC_{50}$ value of 0.37 mg/ml. The fraction 5 was identified as dieckol and the inhibition pattern analyzed from Lineweaver-Burk plots revealed a non-competitive inhibitor. These results suggest that EB has potential as a natural anti-obesity agent.
Objective: This study was conducted to evaluate the effect of dietary energy and lipase supplementation on growth performance, nutrient digestibility, serum profiles, intestinal morphology, small intestinal digestive enzyme activities, biochemical index of intestinal development and noxious gas emission in weaning pigs. Methods: A total of 240 weaning pigs ([Yorkshire${\times}$Landrace]${\times}$Duroc) with an average body weight (BW) of $7.3{\pm}0.12kg$ were used in this 28-d experiment. Weaning pigs were randomly allocated to 4 dietary treatments in a $2{\times}2$ factorial arrangement with 2 levels of energy (net energy = 2,470 kcal/kg for low energy diet and 2,545 kcal/kg for basal diet) and 2 levels of lipase (0 and 1.5 U/g of lipase) according to BW and sex. There were 6 replications (pens) per treatment and 10 pigs per pen (5 barrows and 5 gilts). Results: Weaning pigs fed the low energy diet had lower (p<0.05) gain-to-feed ratio (G:F) throughout the experiment, apparent digestibility of dry matter, nitrogen, ether extract, and gross energy during d 0 to 14, average daily gain during d 15 to 28, lipase activity in duodenum and ileum and protein/DNA in jejunum (p<0.05), respectively. Lipase supplementation had no effect on growth performance but affected apparent nutrient digestibility (p<0.05) on d 14 and enhanced lipase activity in the duodenum and ileum and protease activity in duodenum and jejunum of pigs (p<0.05) fed the low energy diet. Lipase reduced serum low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG), $NH_3$ production (p<0.05) from the feces. Conclusion: The low energy diet decreased G:F throughout the experiment and nutrient digestibility during d 0 to 14 as well as lipase activity in duodenum and ileum. Lipase supplementation increased nutrient digestibility during d 0 to 14 and exerted beneficial effects on lipase activity in duodenum and ileum as well as protease activity in duodenum and jejunum, while reduced serum LDL-C, TG and fecal $NH_3$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.