• Title/Summary/Keyword: Linear-structure

Search Result 3,689, Processing Time 0.028 seconds

FAST MATRIX SPLITTING ITERATION METHOD FOR THE LINEAR SYSTEM FROM SPATIAL FRACTIONAL DIFFUSION EQUATIONS

  • LIANG, YUPENG;SHAO, XINHUI
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.5_6
    • /
    • pp.489-506
    • /
    • 2020
  • The spatial fractional diffusion equation can be discretized by employing the implicit finite difference scheme using the shifted Grünwald formula. The discretized linear system is obtained, whose the coefficient matrix has a diagonal-plus-Toeplitz structure. In order to solve the diagonal-plus-Toeplitz linear system, on the basis of circulant and skew-circulant splitting (CSCS splitting), we construct a new and efficient iterative method, called DSCS iterative methods, which have two parameters. Than we prove the convergence of DSCS methods. As a focus, we derive the simple and effective values of two optimal parameters under some restrictions. Some numerical experiments are carried out to illustrate the validity and accuracy of the new methods.

An LTCC Linear Delay Filter Design with Interdigital Stripline Structure

  • Hwang, Hee-Yong;Kim, Seok-Jin;Kim, Hyeong-Seok
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.6
    • /
    • pp.300-305
    • /
    • 2004
  • In this paper, new design equations based on the pole-zero analysis for multi-layered interdigital stripline linear group delay bandpass filter with tap input ports are presented. As a design example, a four-pole group delay filter with center frequency of 2.14GHz, bandwidth of 160MHz, and group delay variation of $\pm$0.1nS for LTCC technology or multilayered PCB technology is designed. In the design process, it is not necessary to simulate the entire structure, as the simulation of half structures is sufficient. Good results can be attained after the optimizing process was performed three times using the proposed equations and a commercial EM simulator.

Optimal System Structure of Linear Consecutive-k-out-of-n:F System

  • Yun, Won-Young;Kim, Gue-Rae;Hisashi Yamamoto
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.201-206
    • /
    • 2004
  • The linear consecutive-k-out-of-n:F system consists of n components ordered linearly and fails if and only if at least k consecutive components fail. We assume that the failure times of components are independent and identical exponentially distributed. This paper develops a model to calculate the expected cost per unit time of a linear consecutive-k-out-of-n:F system. The optimization problem to find the system structure parameter k to minimize the expected cost per unit time is considered.

  • PDF

A Study on the Non-linear Analysis of Steel Frame with Semi-rigid Connections (반강접성을 고려한 강뼈대 구조물의 비선형 해석에 관한 연구)

  • 이종석;이상엽;김정훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.111-118
    • /
    • 1997
  • Generally, H-section is used for columns and beams in the middle and low building steel structure, But it has a axis and a weak axis. Thus if H-section is used for columns, the structure needs reinforcement on the weak axis. Therefore recently, square hollow section(S.H.S) is used for columns because it is able to cover the vulnerability of H-section. Structural analysis is usually executed under the assumption that connections are either ideally pinned joint or fully joint. Actually all connections are semi-rigid which possess a rotational stiffness. Therefore it can be designed economically as using the property of connections which has a rotational stiffness. This paper presents a prediction model curve which is fitted with Kishi-Chen Power Model about the behavior of connection between H-beam and S.H.S column in the previous experimental paper. It also suggests the new analysis algorithm considering the non-linear of semi-rigid connection and the geometrical non-linear under the effect of axial force.

  • PDF

Design for Triple Band Patch Array Antenna with High Detection Ability

  • Kim, In-Hwan;Min, Kyeong-Sik
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.214-223
    • /
    • 2013
  • This paper proposes a theoretical analysis of hidden device detection and a design of multiband circular polarization patch array antenna for non-linear junction detector system application. A good axial ratio of circular polarization patch antenna is realized by a new approach that employs inclined slots, two rectangular grooves and a truncated ground for the conventional antenna. A good axial ratio of the 1.5 dB lower is measured by having an asymmetric gap distance between the ground planes of the coplanar waveguide feeding structure. The common ground plane of the linear array has an optimum trapezoidal slot array to reduce the mutual coupling without increasing the distance between the radiators. The higher gain of about 1 dBi is realized by using the novel common ground structure. The measured return loss, gain, and axial ratio of the proposed single radiator, as well as the proposed array antennas, showed a good agreement with the simulated results.

Structural joint modeling and identification: numerical and experimental investigation

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.373-392
    • /
    • 2015
  • In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed first for a two parameter joint model and then for a three parameter model, in which cross coupling terms are also included. Two cases of structural connections have been considered, first with a cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of the proposed method is demonstrated through numerical simulation and by experimentation.

An Application of Linear Singular System Theory To Electric Circuits (선형 Singular 시스템 이론의 전기 회로에의 적용)

  • Hoon Kang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1625-1632
    • /
    • 1988
  • This paper aims not only to introduce the concept of linear singular systems, geometric structure, and feedback but also to provide applications of the multivariable linear singular system theories to electric circuits which may appear in some electronic equipments. The impulsive or discontinuous behavior which is not desirable can be removed by the set of admissible initial conditions. The output-nulling supremal (A,E,B) invariant subspace and the singular system structure algorithm are applied to this double-input double-output electric circuit. The Weierstrass form of the pencil (s E-A) is related to the output-nulling supremal (A,E,B) invariant subspace from which the time domain solutions of the finite and the infinite subsystems are found. The generalized Lyapunov equation for this application with feedback is studied and finally, the use of orthogonal functions in singular systems is discussed.

  • PDF

Statistical Methods for Repeated Measures Data with Three Repeat Factors (반복요인이 3개인 반복측정자료에 대한 통계적 분석방법 -양평 주민 혈압자료를 이용하여-)

  • 강성현;박태성;이성곤;김창훈;김명희;최보율
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • In this paper, we consider choosing the appropriate covariance structure for analyzing repeated measures data with three repeat factors from a study of blood pressure data, which is collected from the local residents of Yangpyeong, Gyeonggi-do (2001) and fitted linear mixed models to find the significant covariates on outcome variable(Blood Pressure)

New Adaptive Linear Combination Structure for Tracking/Estimating Phasor and Frequency of Power System

  • Wattanasakpubal, Choowong;Bunyagul, Teratum
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • This paper presents new Adaptive Linear Combination Structure (ADALINE) for tracking/estimating voltage-current phasor and frequency of power system. To estimate the phasors and frequency from sampled data, the algorithm assumes that orthogonal coefficients and speed of angular frequency of power system are unknown parameters. With adequate sampled data, the estimation problem can be considered as a linear weighted least squares (LMS) problem. In addition to determining the phasors (orthogonal coefficients), the procedure estimates the power system frequency. The main algorithm is verified through a computer simulation and data from field. The proposed algorithm is tested with transient and dynamic behaviors during power swing, a step change of frequency upon islanding of small generators and disconnection of load. The algorithm shows a very high accuracy, robustness, fast response time and adaptive performance over a wide range of frequency, from 10 to 2000 Hz.

Delay Dependent Stability of Time-delayed Linear Systems using New Structure of L-K Funciton (새로운 구조의 L-K함수를 이용한 시간 지연 선형시스템의 시간 종속 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.246-251
    • /
    • 2013
  • In this paper, we consider the stability of linear systems without delay decomposition. A less conservative result obtained without delay decomposition is strongly required since it is a basis to get an improved result by applying simple delay decomposition. Unlike the most popular Lyapunov-Krasovski(L-K) function, we consider the cross terms between variables. Based on this new structure of L-K function, we derive a delay-dependent stability criterion in the form of linear matrix inequality(LMI). Finally, we show, by well-known two examples, that our result is less conservative than the recent results.