DOI QR코드

DOI QR Code

FAST MATRIX SPLITTING ITERATION METHOD FOR THE LINEAR SYSTEM FROM SPATIAL FRACTIONAL DIFFUSION EQUATIONS

  • LIANG, YUPENG (Department of Mathematics, Northeastern University) ;
  • SHAO, XINHUI (Department of Mathematics, College of Sciences, Northeastern University)
  • Received : 2020.05.27
  • Accepted : 2020.07.10
  • Published : 2020.09.30

Abstract

The spatial fractional diffusion equation can be discretized by employing the implicit finite difference scheme using the shifted Grünwald formula. The discretized linear system is obtained, whose the coefficient matrix has a diagonal-plus-Toeplitz structure. In order to solve the diagonal-plus-Toeplitz linear system, on the basis of circulant and skew-circulant splitting (CSCS splitting), we construct a new and efficient iterative method, called DSCS iterative methods, which have two parameters. Than we prove the convergence of DSCS methods. As a focus, we derive the simple and effective values of two optimal parameters under some restrictions. Some numerical experiments are carried out to illustrate the validity and accuracy of the new methods.

Keywords

References

  1. Samko SG, Kilbas AA, Marichev OI, Fractional Integrals and Derivatives: Theory and Applications, Yverdon: Gordon and Breach Science Publishers, 1993.
  2. Podlubny I, Fractional Differential Equations, Mathematics in Science and Engineering, 198 San Diego: Academic Press, 1999.
  3. Razminia K, Razminia A and Baleanu D, Investigation of the fractional diffusion equation based on generalized integral quadrature technique, Appl Math Modell 39 (2015), 86C98.
  4. Metzler R, Klafter J, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys Reports 339 (2000), 1-77. https://doi.org/10.1016/S0370-1573(00)00070-3
  5. Benson DA, Wheatcraft SW and Meerschaert MM, Application of a fractional advection-dispersion equation, Water Resour Res 36 (2000), 1403-1412. https://doi.org/10.1029/2000WR900031
  6. Sokolov IM, Klafter J and Blumen A, Fractional kinetics, Phys Today 55 (2002), 48-54. https://doi.org/10.1063/1.1535007
  7. Carreras BA, Lynch VE and Zaslavsky GM, Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model, Phys Plasmas 8 (2001), 5096-5103. https://doi.org/10.1063/1.1416180
  8. Kirchner JW, Feng X-H and Neal C, Fractal stream chemistry and its implications for contaminant transport in catchments, Nature 403 (2000), 524-527. https://doi.org/10.1038/35000537
  9. Kreer M, Kizilersu A and Thomas AW, Fractional Poisson processes and their representation by infinite systems of ordinary differential equations, Stat Probab Lett. 84 (2014), 27-32. https://doi.org/10.1016/j.spl.2013.09.028
  10. Raberto M, Scalas E and Mainardi F, Waiting-times and returns in high-frequency financial data: an empirical study, Phys A: Stat. Mech. Appl. 314 (2002), 749-755. https://doi.org/10.1016/S0378-4371(02)01048-8
  11. Sabatelli L, Keating S, Dudley J and Richmond P, Waiting time distributions in financial markets, The Eur Phys J B. Condens Matter Phys. 27 (2002), 273-275.
  12. I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  13. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math. 56 (2006), 80-90. https://doi.org/10.1016/j.apnum.2005.02.008
  14. Wang H, Wang K-X and Sircar T, A direct (Nlog2N) finite difference method for fractional diffusion equations, J. Comput Phys. 229 (2010), 8095-8104. https://doi.org/10.1016/j.jcp.2010.07.011
  15. K.-X. Wang, H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Advances in Water Resources 34 (2011), 810-816. https://doi.org/10.1016/j.advwatres.2010.11.003
  16. F. Liu, P. Zhuang and K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl. 39 (2012), 2990-3007.
  17. Lin F-R, Yang S-W and Jin X-Q, Preconditioned iterative methods for fractional diffusion equation, J. Comput Phys. 256 (2014), 109-117. https://doi.org/10.1016/j.jcp.2013.07.040
  18. Bai Z-Z, Respectively scaled HSS iteration methods for solving discretized spatial fractional diffusion equations, J. Numer Linear Algebra With Appl. 39 (2018), e2157. https://doi.org/10.1002/nla.2157
  19. Chan RH, Jin X-Q, An Introduction to Iterative Toeplitz Solvers. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), 2007.
  20. Golub GH, Van Loan CF, Matrix Computations, Third Edition Baltimore:The Johns Hopkins University Press, 1996.
  21. Y. Saad, Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003.
  22. Wathen AJ, Preconditioning, Acta Numer. 24 (2015), 329-376. https://doi.org/10.1017/S0962492915000021
  23. P. Duhamel, M. Vetterli, Fast Fourier transforms: A tutorial review and a state of the art, Signal Processing 19 (1990), 259-299. https://doi.org/10.1016/0165-1684(90)90158-U
  24. Bai Z, Lu K and Pan J, Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, J. Numerical Linear Algebra with Applications 39 (2017), e2093.
  25. YuHong Ran, JunGang Wang, An ADI-like iteration method for fractional diffusion equations, J. Linear Algebra & Its Applications 39 (2016), 544-555.
  26. Ping-Fei Dai, Qing-Biao Wu and Sheng-Feng Zhu, Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations, J. Numer Methods Partial Differential Eq. (2018), 1-17.
  27. Ming-Li and Guo-Feng Zhang, Incomplete circulant and skew-circulant splitting iteration method for time-dependent space fractional diffusion equations, Japan J. Indust. Appl. Math. 33 (2016), 251-268. https://doi.org/10.1007/s13160-015-0207-3
  28. Sheng-Feng Wang, Ting-Zhu Huang and Xian-Ming Gu, Fast permutation preconditioning for fractional diffusion equations, J. SpringerPlus 5 (2016), 1109. https://doi.org/10.1186/s40064-016-2766-4
  29. R. Chan, M. Ng, Toeplitz Preconditioners for Hermitian Toeplitz Systems, J. Linear Algebra Appls. 190 (1993), 181-208. https://doi.org/10.1016/0024-3795(93)90226-E
  30. Michael K. Ng, Circulant and skew-circulant splitting methods for Toeplitz systems, J. Journal of Computational and Applied Mathematics 159 (2003), 101-108. https://doi.org/10.1016/S0377-0427(03)00562-4
  31. N. Akhondi, F. Toutounian, Accelerated Circulant and Skew Circulant Splitting Methods for Hermitian Positive Definite Toeplitz Systems, J. Advances in Numerical Analysis 10 (2012), 1151-1170.
  32. ZhongYun Liu, XiaoRong Qin and NianCi Wu. The shifted classical circulant and skew-circulant splitting iteration methods for Toeplitz matrix, J. Canadian mathematical bulletin 60 (2016), 1-10.
  33. Meerschaert MM, Tadjeran C, Finite difference approximations for two-sided space fractional partial differential equations, Appl Numer Math. 56 (2006), 80-90. https://doi.org/10.1016/j.apnum.2005.02.008
  34. Varga RS, Matrix Iterative Analysis, Englewood Cliffs, New Jersey: Prentice.Hall, 1962.
  35. Bai ZZ, Golub GH and Ng MK, Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems, J. Linear Algebra & Its Applications 428 (2003), 413-440.