• Title/Summary/Keyword: Linear systems

검색결과 5,891건 처리시간 0.295초

Analysis of Time-Varying Linear System Using the New Integral Operational Matrix via Block Pulse Functions (블록펄스 함수의 새로운 적분연산 행렬을 이용한 선형 시변계의 해석)

  • Cho, Young-Ho;Shin, Seung-Kwon;Park, Jung-Ho;Lee, Han-Seok;Kim, Jae-Il;Ahn, Doo-Soo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.755-757
    • /
    • 1999
  • The operational properties of BPF(block-pulse functions) are much applied to the analysis of time-varying linear systems. The integral operational matrix of BPF converts the systems in the form of the differential equation into the algebraic problems. But the errors caused by using the integral operational matrix make it difficult that we exactly analyze time-varying linear systems. So, in this paper, to analyze time-varying linear systems we had used the recursive algorithm derived from the new integral operational matrix. And the usefulness of the proposed method is verified by the example.

  • PDF

An LMI-based Decentralized Sliding Mode Static Output Feedback Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 정적 출력 궤환 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제14권4호
    • /
    • pp.381-384
    • /
    • 2008
  • In this paper, we consider the problem of designing decentralized sliding mode static output feedback control laws for a class of large scale systems with mismatched uncertainties. We derive a sufficient condition for the existence of a linear switching surface in terms of constrained linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given constrained LMI existence conditions. We also give an LMI-based algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

Stability Bounds of Delayed Time-varying Perturbations of Discrete Systems (이산시스템에서 시간지연을 갖는 시변 상태 지연 섭동의 안정 범위에 관한 연구)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제13권2호
    • /
    • pp.147-153
    • /
    • 2007
  • The stability robustness problem of linear discrete-time systems with delayed time-varying perturbations is considered. Compared with continuous time system, little effort has been made for the discrete time system in this area. In the previous results, the bounds were derived for the case of non-delayed perturbations. There are few results for delayed perturbation. Although the results are for the delayed perturbation, they considered only the time-invariant perturbations. In this paper, the sufficient conditions for stability can be expressed as linear matrix inequalities(LMIs). The corresponding stability bounds are determined by LMI(Linear Matrix Inequality)-based algorithms. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed results.

Output-feedback LPV Control for Uncertain Systems with Input Saturation (입력 제한 조건을 고려한 불확실성 시스템의 출력 귀환 LPV 제어)

  • Kim, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제19권6호
    • /
    • pp.489-494
    • /
    • 2013
  • This paper tackles the problem of designing a dynamic output-feedback control for linear discrete-time norm-bounded uncertain systems with input saturation. By employing a LPV (Linear Parameter Varying) instead of LTI (Linear Time-Invariant) control, the useful information on interpolation parameters appearing in the procedure of representing saturation nonlinearity as a convex polytope is additionally applied in the control design procedure. By solving the addressed problem that can be recast into a convex optimization problem characterized by LMIs (Linear Matrix Inequalities) with one prescribed scalar, the vertices of convex set containing an LPV output-feedback control gain and the associated maximal invariant set of initial states are simultaneously obtained.

Asymptotic Stability of Discrete-Time Linear Systems with Time Varying Delays (시변시간지연을 갖는 이산시간 선형시스템의 점근안정도)

  • Song, Seong-Ho;Kim, Jeom-Keun
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.641-643
    • /
    • 1998
  • This paper deals with the stability of discrete time linear systems with time - varying delays in state. In this paper, the magnitude of time - varying delays is assumed to be upper-bounded. The stability of discrete time linear systems with time - varying delays in state is related with the stability of discrete time linear systems with constant time delay in state. To show this, a new Lyapunov function is proposed. Using this Lyapunov function, a sufficient condition for the asymptotic stability is derived.

  • PDF

A remark to a Constrained OWA Aggregation

  • Hong Dug Hun;Kim Kyung Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.355-356
    • /
    • 2005
  • The problem of maximizing an OWA aggregation of a group of variables that are interrelated and constrained by a collection of linear inequalities is considered by Yager[Fuzzy Sets and Systems, 81(1996) 89-101]. He obtained how this problem can be modelled as a mixed integer linear programming problem. Recently, Carlsson et al. [Fuzzy Sets and Systems, 139(2003) 543-546] obtained a simple algorithm for exact computation of optimal solutions to a constrained OWA aggregation problem with a single constraint on the sum of all decision variables. In this note, we introduce anew approach to the same problem as Carlsson et al. considered. Indeed, it is a direct consequence of a known result of the linear programming problem.

Design of the Hybrid Controller using the Fuzzy Switching Mode (퍼지 스위칭 모드를 이용한 하이브리드 제어기의 설계)

  • 최창호;임화영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.260-269
    • /
    • 2000
  • The fuzzy and state-feedback control systems have been applied in various areas from non-linear to linear systems. A Fuzzy controller is endowed with control rules and membership function that are constructed on the knowledge of expert, as like intuition and experience. but It is very difficult to obtain the exact values which are the membership function and consequent parameters. though apply back-propagation algorithm to the system, the convergence time a much. Besides, the state-feedback system is most widely used in industry due to its simple control structure and easily able to design the controller. but it is weak in complex system of higher degree and non-linear. In this paper presents the design of a fuzzy switching mode, it these two controllers work at different operation conditions, the advantages of both controller can be retained and the disadvantages can be removed. Between the Fuzzy and the State-feedback controlles, the good outputs are selected by the switching mode. Moreover it is powerful in complex system of higher degree and non-linear. In these sense compared with the state-feedback controller, the performance of the proposed controller was improvedin the section of linearization.

  • PDF

LMI-Based Synthesis of Robust Iterative Learning Controller with Current Feedback for Linear Uncertain Systems

  • Xu, Jianming;Sun, Mingxuan;Yu, Li
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.171-179
    • /
    • 2008
  • This paper addresses the synthesis of an iterative learning controller for a class of linear systems with norm-bounded parameter uncertainties. We take into account an iterative learning algorithm with current cycle feedback in order to achieve both robust convergence and robust stability. The synthesis problem of the developed iterative learning control (ILC) system is reformulated as the ${\gamma}$-suboptimal $H_{\infty}$ control problem via the linear fractional transformation (LFT). A sufficient convergence condition of the ILC system is presented in terms of linear matrix inequalities (LMIs). Furthermore, the ILC system with fast convergence rate is constructed using a convex optimization technique with LMI constraints. The simulation results demonstrate the effectiveness of the proposed method.

Adaptive Fault-Tolerant Dynamic Output Feedback Control for a Class of Linear Time-Delay Systems

  • Ye, Dan;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2008
  • This paper considers the problem of adaptive fault-tolerant guaranteed cost controller design via dynamic output feedback for a class of linear time-delay systems against actuator faults. A new variable gain controller is established, whose gains are tuned by the designed adaptive laws. More relaxed sufficient conditions are derived in terms of linear matrix inequalities (LMIs), compared with the corresponding fault-tolerant controller with fixed gains. A real application example about river pollution process is presented to show the effectiveness of the proposed method.

Parameter Identification of Nonlinear Systems using Hopfield Network (Hopfield 신경망에 의한 비선형 계통의 파라미터 추정)

  • Lee, Kee-Sang;Park, Tae-Geon;Ham, Jae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.710-713
    • /
    • 1995
  • Hopfield networks have been applied to the problem of linear system identification. In this paper, Hopfield network based parameter identification scheme of non-linear dynamic systems is proposed. Simulation results demonstrate that Hopfield network can be used effectively for the identification of non-linear systems assuming that the system states and their time derivatives are available. Therefore, the proposed scheme can be applied in fault detection and isolation(FDI) and adaptive control of non-linear systems where the Hopfield networks perform on-line identification of system parameters.

  • PDF