• Title/Summary/Keyword: Linear systems

Search Result 5,891, Processing Time 0.033 seconds

Bounds for Stationary Waiting Times in a Class of Queueing Networks using Stochastic Ordering (확률적 순서를 이용한 대기행렬 망에서 안정 대기시간의 범위)

  • Seo Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.1-10
    • /
    • 2004
  • In this paper we study bounds for characteristics of stationary waiting times in (max, +)-linear systems with a Poisson arrival process. which are prevalent in manufacturing systems, kanban systems, cyclic and acyclic fork-and-join type systems, finite or infinite capacity tandem queues with various kinds of blocking, transportation systems, and telecommunication networks, and so on. Recently, some results on series expansion for characteristics, such as higher moments, Laplace transform, and tail probability, of transient and stationary waiting times in a class of (max, +)-linear systems via Taylor series expansions have been studied. In order to overcome the computational complexity in those results, we consider bounds for characteristics of stationary waiting times using valuable stochastic ordering results. Some numerical examples are also provided.

Low Complexity Ordered Successive Cancellation Algorithm for Multi-user STBC Systems

  • Le, Van-Hien;Yang, Qing-Hai;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2A
    • /
    • pp.162-168
    • /
    • 2007
  • This paper proposes two detection algorithms for Multi-user Space Time Block Code systems. The first one is linear detection Gaussian Elimination algorithm, and then it combined with Ordered Successive Cancellation to get better performance. The comparisons between receiver and other popular receivers, including linear receivers are provided. It will be shown that the performance of Gaussian Elimination receiver is similar but more simplicity than linear detection algorithms and performance of Gaussian Elimination Ordered Successive Cancellation superior as compared to other linear detection method.

Robust and Reliable H$\infty$ State-Feedback Control : A Linear Matrix Inequality Approach

  • Kim, Seong-Woo;Kim, Byung-Kook;Seo, Chang-Jun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2000
  • We present a robust and reliable H$\infty$ state-feedback controller design for linear uncertain systems, which have norm-bounded time-varying uncertainty in the state matrix, and their prespecified sets of actuators are susceptible to failure. These controllers should guarantee robust stability of the systems and H$\infty$ norm bound against parameter uncertainty and/or actuator failures. Based on the linear matrix inequality (LMI) approach, two state-feedback controller design methods are constructed by formulating to a set of LMIs corresponding to all failure cases or a single LMI that covers all failure cases, with an additional costraint. Effectiveness and geometrical property of these controllers are validated via several numerical examples. Furthermore, the proposed LMI frameworks can be applied to multiobjective problems with additional constraints.

  • PDF

Direct Learning Control For Linear Feedback Systems

  • Ahn, Hyun-Sik;Park, Ki-Hong;Heo, Seung-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.96-100
    • /
    • 2003
  • In this paper, a DLC method is proposed for linear feedback systems to improve the tracking performance when the task of the system is repetitive. DLC can generate the desired control input directly from the previously learned control inputs corresponding to other output trajectories. It is assumed that all the desired output functions considered in this paper have some relations called proportionality and it is shown by mathematical analysis that DLC can be utilized to generate additional control efforts for the perfect tracking. To show the validity and tracking performance of the proposed method, some simulations are performed for the tracking control of a linear system with a PI controller.

  • PDF

Observer-based Control for Switched Linear Systems (선형 스위칭 시스템의 관측기 기반 제어)

  • Yeom, Dong-Hae;Im, Ki-Hong;Choi, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.92-94
    • /
    • 2004
  • In the previous work, we proposed a new stability criterion for the stability of switched linear systems. By the proposed criterion, we could simply check the stability of switched linear systems because the criterion is applicable to each individual subsystem without need to consider the overall system. Using this criterion, we provided the methods that design a state feedback control when full states are available. In this paper, we apply the same criterion to the case when full states are not available. Unlike existing method such as dwelling time analysis, the proposed method is suitable to a fast switching process because there is no need to consider dwelling time. And we can easily achieve designing multi-controller, multi-estimator, and the supervisor by means of the proposed method.

  • PDF

Development of a Linear Chemigation System (가로주행식 케미게이션 시스템의 개발)

  • 구영모;배영환;박금주;정상옥
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.93-104
    • /
    • 2001
  • A linear chemigation system, integrating agrichemical appication units of pesticide and fertilizer into an irrigation system, was selected as a suitable model for the cost savings in farm management and automation. Technical designs were conducted in the areas of structure, power, drive, control, and hydraulic systems. An experimental farm was sectioned into the fields of 40m by 200m and systemized with the linear-move chemigation system of 36m in span. The chemigation system consisted of a base unit monitoring and controlling overall operation, and a driving unit traveling linearly and injecting agrichemicals. Monitoring and interlocking systems were utilized against unexpected malfunctions of power, injection and drive systems using radio freuency modems between the units. The system can be also modified to various farm sizes and stationary systems of indoor and outdoor.

  • PDF

A Study on Analysis of Non linear Frequency Response of Electro-Hydraulic Systems (전기 유압 시스템의 비선형 주파수 응답 해석에 관한 연구)

  • Lee, Yong-Joo;Jun, Bong-Geon;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.246-252
    • /
    • 1999
  • In this paper, the frequency response characteristics of the velocity controlled EHS system obtained by linear simulation method, nonlinear simulation method, and experimentation are compared one another, in order to verify propriety of the linearization method in case of analysis of hydraulic systems. The Bode diagrams are obtained by transforming time domain data of experimental results and nonlinear simulated ones with Fourier transform. The results of nonlinear simulation are more similar to the frequency response of the real systems than those of linear simulation. It is found that nonlinearity of hydraulic systems is mainly occurred from servo valve, and nonlinearity is increased as displacement of servo valve spool increases.

  • PDF

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.

LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems (정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화)

  • Lee, Jae-Kwan;Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.

Design of A Robust Adaptive Controller for A Class of Uncertain Non-linear Systesms with Time-delay Input

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1955-1959
    • /
    • 2005
  • This paper presents a systematic analysis and a simple design of a robust adaptive control law for a class of non linear systems with modeling errors and a time-delay input. The theory for designing a robust adaptive control law based on input- output feedback linearization of non linear systems with uncertainties and a time-delay in the manipulated input by the approach of parameterized state feedback control is presented. The main advantage of this method is that the parameterized state feedback control law can effectively suppress the effect of the most parts of nonlinearities, including system uncertainties and time-delay input in the pp-coupling perturbation form and the relative order of non linear systems is not limited.

  • PDF