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Robust and Reliable [, State-Feedback Control :
A Linear Matrix Inequality Approach

Seong-Woo Kim, Byung Kook Kim, and Chang-Jun Sea

Abstract : We present a robust and reliable #,. state-feedback controller design for linear uncertain gystems, which have
norm-bounded time-varying uncertainty in the state matrix, and their prespecified sets of actuators are susceptible to failure. These
contrallers should guaraniee robust stability of the systems and ., norm bound against parameter uncertainty and/or actuator
failures, Based on the linear matrix inequality (LMI) approach, two slate-feedback controller design methods are constructed by
formulating to a set of LMIs carresponding 1o all failure cases or a single LMI that covers all failure cases. will: an additional
coslraint. Bffectiveness and geometrical property of these contrellers are validated via several numerical examples Furthermore,
the proposed LMI framewarks can be applied to multiobjective problems with additional constraints.

Keywaords : robust and reliable H., control, state-feedback contral, linear matrix inequality, actuatar failures

I. Introduction

The reliable control problem for dynamic systems is one
of crucially important topics for practical situations, where
various component failures and outages ocour. Many design
methods were suggested to tolerate actuator and sensor
failures with various reliable contrel goals [11,12,13].
Specifically, Veillette er ol developed a systematic control
methodology to provide guaranteed stability and A, per-
formance even in the event of susceptible actuator or sensor
failures[13]. In order 1o get such a reliable contreller, an
appropriate solution is needed for a pair of modified
algebraic Riccati equations, On the other hand, the problem
of robust H.. conirol for lincar uncertain systems has got

a spotlight by many researchers. For instance, Xie and de
Souza designed a controller that stabilizes uncertain systems
while satislying an A, norm bound constraint on
disturbance atlenualion for all admissible time-varving
nerm-bounded uncertainties[14].

To tackle both reliable and robust problems, recently Seo
developed an algebraic Riccati equation {ARE)-based robust
and reliable H,. control methodology via state-feedback [or

linear uncertain systems wilh parameter wncertainties in the
state matrix and possible actuator failures, and also its
outpul feedback version for sensor failures[10]. However,
the ARE approach [aces nonconvex problem, having somc
difficulties in analytically solving various multiobjective
control problems. On the other hand, the linear matrix
inequality(LMI) approach, as discussed in [2,9], has
advantages thal il is a convex problem and can be solved
using numerically efficient algorithm.

The main objective of this paper is 1o present design
meihods for robust and reliable H,, state-fcedback control
prablem using the LMI formulaiion, which enables us to
svnthesize a multiobjective problem with additional
performances such as H, performance, regional pole
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constraints, and so on. In this paper, we first show that the
reliable 77, state-feedback control system can be rendered
to LMI condilions. Then, we exiend the method to design
a robust and reliable H.. controller for linear uncertain
systems with actuator failure. Thus, this resull provides a
LMI version of previous researches[13,14].

The rest of this paper is organized as follows: Section II
presents the problem definition and basic lemmas. In
Section LI, we give mathematical formulation of actuator
failure, and two robust and reliable A.. controller designs.
Also, numerical algorithms to solve the LMIs and levels of
disturbance attenuation in several failure cases are
discussed. Simulation results are illustrated in Section IV to
reveal the performance of proposed controllers. Finally,
concluding remarks and [urther research area are presented
in Section V.

II. Problem formulation
Consider a linear uncertain system with control input {or
actugtors) weR™.

I

= Ax( )+ Bul &)+ Gl A (1
2(f) = Cx(D+Duld

where x=R* is the state, z=R? is the contiolled output,
w= R is the disturbance input, and A4 15 a time-varying or
constant  matrix.  GeR*’, B=R"™, =R  and
DeR7'™ ale conslant matrices. We reasonably assume that
C'D=0, D"D=F>0. The unreliable actuators among all
actuaiors « herein can be outaged occasionally. let
2 {0, -,m} denote the subsel of actuators susceplible to
failure: '@ denotes the complementary subsel of actuators,
which are immune to fail. Then, the conlral input can be
decomposed as (after a suilable ordering)

w=| d
o
Moreover, the cutput of a faully actuator is assumed to

be any arbilrary energy-bounded signal belonging to
La[0, w0) like the exogenous input u(7. According to this
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classification, the inpul mairices B and D, the state
feedback gain matrix K=R™'", and the weighting matrix
F=DTD3( can also be decomposed similarly into

B
K

i

[BQ] B, f)=[693, Digl
[KE r=| K3

it

Kol 0 Ry

where BgeR™, BgeR™, Dg=R"™’, Dg=R™,
Ro=R"™, and R eR"™'. Here, m=;-+% where ; and £ are
numbers of reliable and unreliable actuators respectively.
We can decompose further as:

By = 1B By - B]

B.Q - [BJ+1 BH—Z o ij

Dg=1[D Dy ~ D]

D.Q =[ D]Tl Do Dm]
-K:l K}—l
X, K,

where B,=R", DeR% and KeRY" [or =12, m
Since failure cases are determined by any binary
combinations among the set of £ unreliable actuators, ihe
number of all cases in terms of actuator fajlure is N=2*
(including no failure case). With this system definition, two
control problem under consideration are as [allows.
Problem 1 : (Reliable M., State-Feedback Control Pro-
blem): When a constant >0 given, design a fixed linear
state-feedback controller to stabilize the linear system
without parameter uncertainty(.A), and to guarantee the
given &, norm constraint (0 against augmeried dis-
turbances including any susceptible actuator failure signals.
Problem 2 - {Robust and Reliable 7. State-Feedback
Control Problem): When a constant >0 given, design a
fixed linear state-feedback controller 1o stabilize the linear
uncertain systemn and to guarantec the given H, norm
constrainl  y»( againsi augmenied disturbances including
any susceptible actuator failure signals as well as all
admissible time-varying uncertaintics in the state matrix.
Before proceeding further, we need (o the following
lemmas additionally.
Lemma 1 : (Schur Complement) The linear matrix
inequality

o) S0
[ st =)o @

whete ) =007, Rx=RHT and 5§(» depends
affinely on x, is equivalent to

€D, Q) — SR 'S0 0
or
)0, R — S0 T2 TISx) <0

Proof : This is called as Schur complement. See Boyd er

al. (1994) [1]. |
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Lemma 2 : Let A=R™ ", @#=0"=eR"", H=R" and
E=R’"" be given mafrices. Suppose ihat there exist a
scalar 50 and a symmetric matrix X»0 such thal the
following linear matrix inequality is satisfied.

AX+xAT+0 8H XE!

sH” -3 0 (<0 (3)
EX 0 -8l
Then,
LA+ HROEIX + X[ A+ HFOE) T+ @< )

for all FiHer™ satisfying FT(HFH<I, #£0.
Procf : Using Lemma 1, (3) is equivalenl 1o

AXFXAT 4 SHHT % XETEX + 040 (5)
The above equation and the following relation
HE()EX+ XEF D F <688+ = XETEX
yield (4). |

III. Main results

In this section, we apply the LMI approach 1o get reliable
cantrollers for actualor failure. Our goal is Lo compute static
state-feedback controllers  w(H=Ix(H thal meet F.
norm-bound on the closed-loop behavior.
1. Reliable control framework

Consider an actuator failure case. Let f=.q2 be particular
subset of indices whose actuators are actually failed and
728 be the complementary subset of 7 Without loss of
penerality. 5y and 8, Dy and Dy, and Ko and K, can
be defined in ierms of the failed actuators and normaliy
operating  acluators, respectively. Considered as a
continuous-time  system with constant 4 matrix, the

resultant system is described as the following post-fauli
model,

D = Ax{ )+ B D+ Bac D+ Gu(h) 6
2f) = Celp+D o dH=2(h— DD (©)

Sice the fwled actualor s, is counsidored as a
dislurbance in addition to ., the disturbance vector is

extended to w,:[ w]. Closed-loop system with a state
oy

feedback (actuated by nermally operating actuators only)
can be depicted as Figure 1 with transfer lunction 7 [rom

wy 0z given by

[ A7IB7] 1 A+B#, 116 BJ
T?—[ 5}@3}“ T DA T 0 7

where the realization matrices of the closed-loop system are
as follows:

A = A+BK;
By =1GB)
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Fig. 1. The state feedback control system with actuaior
failure.

Now, we try to modily the Bounded Real Lemma to this
casc of actuator failure. The lollowing lemma is presented
as a basis to change the [, constraint to matrix inequality
for failure cases.

Lemma 3 : (Bounded Real Lemma) Consider the failed
syslem (6) with closed-loop transfer function 75 . Then,
the [ollowing stalemenls are equivaleni:

(1 Tl o= 1 D5 CHsl- A7 7'B3l oy and A is
stable in the continuous-time sense ( Be{d,(A5)<0)-

(2) Therc exists a symmetric positive definite solution
P~ 1o the LMI :

ALPs+ P35y Py
E’Tfp} - &)
& z

or, equivalently there exists a symmetric positive definite
solution &7 1o the LMI:

QA AWy By 1o
BY -7 DIgs|<o ®

@05 @by I

Proof : By direct use of the Bounded Real Lemma, the
proof is naturally satisfied. See [2.8]. [ |

At this time, our main inlerest is to design a
state-feedback conlroller in order not only fo robustly
stabilize the systern against any susceptible actuator failure
but also to satisfy H. constraint || 75| <y To derive
main results, define a new matrix variable V=R ™ for the
state-feedback controller[5]. Without loss ol generality, the
following relation is satisfied.

v=[vL v =[v] v -vIT

where each row vector V, for /=1,2, - m corresponds 1o
column vector B, of the input matrix. We statc the

following main theorem
Theorem 1. Consider the linear system (&) with unreliable

actuators zg, and (A, By is a stabilizable [air. The system
is robustly stabilizable againsi any susceptible actuaior
failure 4, and alse the 7., constraint | 75| .{y is
satisfied if there exists a symmelric matrix X and 17 such
that the following ( N+1) LMIs are ali satislied

XAT+AX T Tt

B v+ ViET [z B xCT+viph
[G By — ¥ 0 <0 (o
CX+ D3V, 0 -1

for /=1,2,---,N, and

where 7 is an pth particular subsel among N=2* possible
cases ol acluator failure, ;% is the complementary set of #,
and By ., B, , Dy, and V, with proper dimensions
consist of the corresponding row or column vectors of &,
oy and ¥, respectively. Moreover, the control input is as
follows.

Wl =KD, KX—=V="Vy (12)

Proof : By virtue of Lemma 3, the system is robustly
stable against the actuator failure j and the A, constraint

I 751 <y is satisfied if and only i there exists a

symmelric @-»0 with the following LMIs

Q}:4.?+AQ}' [G B ] Q" T+Q’ {IDi
T L A
[G BT -7 0 <0 (13)
g }+D-,-I{7Q 7 4} -7

However, Eg. (13) is yet nonlinear because of terms like
B-K )+ To eliminate nonlinearity. new controller variable

V= KQ7 i3 introduced. Then, in case of any one failure
f=f, the sufficieni conditions for reliable H, control

problem are reduced lo one of the equations {10)
Now, the LMI formulation invelves & Lyapunov
matrices @y, - , &y for each failure case. As a

multiobjective problem aboui all failures 7 .7y our
reliable comtrol probiem requires single comtraller related
with X3 (0. To recover convexity in the formulalion, this is
restricled by the lollowing consiraint.

Qh:"'=sz\r:X (]4)

Then, we have the final form in {10). Moreover, since
K=v%X for =1, m, the proposed state-feedback
coniroller forms (12). [ |

Apparently, notice that this condition includes two
limiled cases of actuator [ailure, which are the maximum
failure with B; =By and no [lailure cases with B4,=B.

Remark 1 . This framework can be analyzed (hrough a
convex polylopic domain, similarly described in  [4].
Consider

&=“§gﬂempm®1 (15)
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where [G,-+, G} denates the discrete set, in which each

element corresponds to a [ailure among total N failure
cases. This definilion can be formulized as &= ﬁ\a,@, ,

ﬁ&‘i=| where o,=0 or 1, and, moreover, it forms a kind
011:1001wex hull that is the set of such convex combinations
of 1he given elements|4]. Fortunately, being diffecent from
oulpul [eedback case, the state feedback case does not need
to use such as cross decomposition algorithm in order to
compensate for the nonlinear terms in the LMIs and construct
single controller for all convex failure conditions. ]

Nonetheless, this framework may have disadvantage of
the computational load, which is caused by at least N=2*
LMIs (14} with respect to % unreliable actuator. To reduce
this burden, the TMI constraints of this problem should be
reduced as possible. Hence. we suggest the following
theorem that leads to single LMI insiead of A equations
(Loy.

Theorem 2 : Consider the linear system (&) with un-
reliable actuators w,, and {A, By is a stabilizable fair.
The system is robustly stabilizable against any susceptible
actuator [ailure, and also the H. constrant || T4 <y i8

salisfied if there exist a symmetric X, V4 and Vg such
that the following LMls are satisfied

N B}jﬁ;ﬁ% pr [G Bal XCT+ 150G ot VIR,
(G BT =7 0 O
CX+Dx3T5 0 —1 0
(16}
X0 (17}

where the diagonal matrix R o= R, =D5LD 5. Moreaver,

the control input is as follows.

wl = Kl D), KX=[ ‘;;

(18)

Proof : [t suffices to show that {16} implies the equation
set (10) of Theorem 1. After simple calculation by using
Lemma 1, the LMI condition (16) is equivalent to

6 = XATHASH BV o+ VEBG+ T (GG + BoBY)
+ XCTCX+ VER GV 5+ (Bl+ RoVoR 7 Bt VAR <0
(19)

MNow consider the system (6) that has an actual failure 1.
It follows from (13) that one of the LMI (10} of the
previous theorem must be satisfied, corresponding to the
failure. From

B}V’f: [B_Tg Bgff][ VE],

2—
vh vy )[fe 0
RERE ’][o Ra

Il

VIRV

Vg ]
Vi

equalion. (10) is reduced 1o the following equation through
similar process of (19).

FXATY AXT BgVoh VoBL+Bo Vo A+ Vi B,
+ L (66T B ED+XCTCX+ VIR GV o+ Vi R 0o /V e K0
s

20

where Re=D%Dy and R, ,=D% D4, By completing
the square in lerms of elements associated with @— f, the
cquatien is rearranged to

XAT+HAX+ Bol o+ VLB T 3 (GGT+B:BD

+XCTCX+ VER Ve~ Bo Ra B @
+H(Bg it VG ;Ro- PRI AB g+ Vi Ro <0

Noting thal the relationship

{(Ba+ VaR IR (Bot+ ViR )T
= (Bp_+ Vi Ro-JRal i(B.Q—f+ Va-Ra 7
(B4 VIRIRUB A+ VIR)T

and the controller gain (18), subtracting (21} from {19)
produces

(B+ VI R)R, B VIR) -FB_@_,(# FFRZLIEY =0 (22)
Thus, il follows that (19) implies (20). [ ]

Let X denote a sel ol nx# real symmetric malrices, and
define constrainl sets [rom Theorem 1 and Theorem 2 as

A=V XyeR" "2 X0 and Egs.(10Yholdy  (23)
A={(V.XD=R" "X X0 and Eg.(18)holds} 24)

The constraint sels A, and A, are both pelylope and

open convex hull, having bounded by each sel ol linear
incqualities. Significantly. since (10) implies (16) but not
converse, all ¥ and X in A, are also in A, and it is

followed by a corollary. MNotice that A; can be considered
as almost an ellipsoid contained in the polytope 4.
Corollary 1 : Suppose that both A, and A, are nol

emply, having each stabilizing solution to the control
system. Then, 1,24,. [ ]

Remark 2. Interestingly, this LMI approach has a
conneclion to  ARE-based H. control. Define

Vo —=min ; & Afier the completion of square wilh
respect to ¥4 we get V. =- R 'B7. Hence, confline the
controller gain o have K=-R™'B'P where P=X"!,
R=0D7D is inverlible.

Mulliplying (20) by P. the equation is equivalent to

ATP+ pA— PBRT'BIP+ % PLGGT+BBNP+CTC (25)

Since this equation is dominated by the case ol maximum
[ailure ( 7/=12), we only need a symmeltic matrix P such
that the malrix inequalily holds:

ATP+PA—-PBsRE BSP

+—}12P(GGT+BQB?@‘)P+ cTeeo (261

Hence, we can get a stabilizing solution P [rom the
following linear matrix inequalities
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XAT+AX—RgRF'BY (G Byl XC7
(G Bal" AT 0 0 @n
CX 0 —rI
X0
with controller gain K=—F 'B'P where p=x "L
Moreover, with the positive definile condition P3Q, this
inequality can be reduced 1o be equality condition that has
a stabilizing solution P. Notice that this is a slightly
maodified version of [12]. While the ARE approach has
compulationally more beneficial, the convexity of LMI
approach provides more {lexible solution set. [ |
2. Robust and relable control framework
We extend the solution o robust and reliable F.. control
problem for a class of linear uncertain systems. Consider a
uncertain system with parameler uncertainty in the siale
matrix.

xcz[E g = zéjcc;;((;)) + Ba( 4 (28)
We use the concepl of quadratic stability with disturbance
allenuation in order (o guaranice an H, perlormance
Izll <%) wl s lor the given system subject to the
norm-bounded  uncertainties. We  refine the quadralic
stability from the work of Xie and de Souza [14] 1o suit our
need.

Defintion 1 - Given a scalar >0, the uncertain sysiem
(28) is said to bs quadratically slable with an 4. norm
bound y if there exisls a symmetric positive-definite matrix
PeR™ " to the malrix inequality:

B'P —¥0 0|« 29

[AT(t)P;rPA(r) FB ol
C 0 —1I

or, equivalently if there exists a symmetric positive delinile
solulion @ to the matrix inequality:

QAT H+ADY B gCT
B!

-0
) 0 -7

<0 {30)

This definition implies the following [act. This definition
is similar (o that of Lemma 2.1 in [14].

Lemma 4 : Suppose that the uncerlain system (28) is
quadratically stabilized with an H_-norm bound 30 via
linear feedback. Then for any admissible parameter
uncerlainly in  A(#, the closed-loop system is uniformly
asymplotically stable. Mareaver, with the assumption of the
zero initial condition, the controlled output = satisfied

lzlz<rlwl, (30

for any admissible parameler uncertainty AA(-) and all
nonzere we Lo, w). [ ]

When there are [ailures in unreliable actuators, the class
of linear uncerlain system is given by the following
post-fault model:

()
z }( O

[A+AA]A D+ By A D+ Bar{ £+ Gl t) 323
Col ) + DA B

Il

where AA(H) = HF(HE and the time-varying uncertainty
matrix F(H=R* satisfies FTF<I By using Lemma 2 and
4, we gel the following result.

Theorem 3 : Consider the linear unceriain system (32)
with unreliable actuators g, and (A, Bz is a stabilizable
[air. The system is quadratically stabilizable with the I,
norm bound p against any susceptible actvalor Tailure if
there exist a symmelric X and 7 such that the following
LMIs are satisfied

AT+ Ax o - T AT T
+ BV + VLA (G Bdd oH XCT+ViDY XE
6 BT e S 0 0
ak” ¢ — &7 0 0 |<o {(33)
CX+ D41 { ] -7 0
EX ] 0 0 — &7
for =12, N and
350 (34}

where ¥ is the /th case among the sel of linear

combinations of unreliable actuators and & is a positive
scalar. Moreover, the conlral inpui is as Follows.

wlty=Fal), EX=V=1V, (35)
Proof * By Lemma 1, (33} is reduced to

XA+ AX+ B4V + VLBE

+%(GGT+BEB£ SH XET

+ XCX+ VIRV,
aHT ~&I 0 <0 (36
EX 0 —4f

for i=1,2, N. Define

O=B,V,+ V’f-,;B{,ﬁ-ﬁ(GGT:—BﬁBE
+XCTOX+ VIRV,

i

(37

Then, using Lemma 2 and similar procedure of the proof
of Theorem 1, the proof is completed. | ]

Remark 3 . This is an exiension of Theorem 1 in case
of having norm-bounded parameter uncertainties. After
simple calculation, the LMI conditions (33)-(34) can be
converled to

XAT+H AX+ By Vo + VIBL L (6ot + B BY)
. ] 7 ) (38)
+8HH" X CX+ VEDLD Vo L XETEXCD

for §=1,2..- N. Now, let K=—71 'B'P where P=Xx"!
and R=D7D, and multiply both sides of {(38) by Z. Then,
the equation is equivalent to the Riccati counterparl.

AP+ PA—PBLR5 BLP+ L PGCT+ B 5P
o 39
+8PHF P+ C7C+ -5 ETEQ

for ¢=1.2, -, N The equations herein are dominated by the
case of maximum failure ( r=1lor /=) and represenied by

AP+ PA-FBoRT BLP+ L HGET+ B DDIP o)
- BPHETP+ CTCH — BB
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where HBz=B-. This result is a modified version of Seo
and Kim [10]. [ ]

Corollary 2 : The lincar uncertain system (32) is
quadratically stable with an H.-norm bound 3 if there
exists a &0 such that the system

A i
(D = A+ BauA+[ G By W 8H] ::i,?
1) @41
) = [ c x(fJJr[DO?]u;(t)
Tﬁ‘—E

is quadratically stable against any susceptible actuator
failure 7 with A, norm less than .

Proof : Applying Corollary 1 in the work of Gu[6] to
alorementioned theorem complétes the proof. |

The following theorem is the vounterpart with norm-
bounded parameter uncertainties to Theorem 2.

Theorem 4 : Consider the lihear system (32) with
unreliable actuators wg, and (A, B4 is a stabilizable fair.
The system is guadratically stabilizable with the #.. norm
bound 3 against any susceplible actuator failure if there
exist a symmetric X, Vg and ¥, such that the following
LMIs are satisfied

XAT3 A%

VBV vagh (6 Bal & XCT+ VDG XET Bo+ ViRo

(G BT -4 0 0 0 S0
sHT i — 81 0 i 0 <0
CX+ DoV 0 0 -7 0 0
EX 0 i} Q i ]
BI-- RaVp il 0 Q 0 -Ry
(42)
x50 {43)

where Rg= RI=D%D >0, Moreover. the control input is
as [ollows,

wl = Kl i), KX = [ ‘Tf_?-’ (44)
W,
[ ]

Iv. Example and simulation
Three examples are gven in this section Lo illustrate
usefillness of this approach against the others. The first
example presents some pgeometric features of various
refiable controls, giving basic insights on their approaches.
The second example concerns aboul more complex system
that has time-varying parameter uncerlainty and partial
actuator  failures. All LMI-relaled computation was
performed from the ILMI Control Toolbox [3].
Example 1 : Consider the following simple linear system
with two inputs

H#HH = —x+—\}-§- w+ 3(J+—V,vl-§ 2
x :
| %
71_2"1{3_

We assunie that the reliable actuator and the unreliable
actuator correspond t0 wp=1zq and = ., respectively.

Moreover, the parameter y is assumed to be 1. Now, we
compare our LMI approach to other conventiomal omes:
Standaid LQ control. reliable LG control, and ARE
approach of reliable H., conirol. To fit this example fo
conventional LQ) approach, we consider the auxiliary
regulated oulput z, —z and the performance index 7

F= [t [GR L adide (46)

For the given perfermance index. it is well known that
the standard L[Q-optimal state-feedback controller is
computed from the solution of the algebraic Riccati equation

ATP+ PA— PRETIBTP g=0 47

and 1be controller zain w=Krx with K=—F 'B'P
Likewise, from (3) in Veillette|12], the required ARE for
reliable LQ) slale-feedback control is formulated as

ATP+ PA—- PBsR 5 BSP+ Q=0 (48)

and the controller gain z= Kx with K=—R " 'B7P. rom
the algebiaic relations Q=¢7C, F=D"D, and K= Vx !
where X=p"! and V=—R 'BT in the previous section,
the selutions (1, Va, X) of abave (wo AREs obtained are
shown in Table 1.

Table 1. Reliable control designs and their solutions.

Approach Solution

LO control Pi=(—-1,—VZ,1+V3)

Reliable LQ conirol Po={—1,—V2.1+V3)

Reliable H., control

Py=(-1,-v2,7)
{ARL approach)

Hefiable H, control o
nNy: Egs. (49), (50)
(EMI approach Theorem 1)

Reliable FH.. conirol

Iy Eg. (51)
(LMI approach: Theorem 2}

Finally, in the case ol reliable F, conirol, three cases
considered are the ARE approach in Remark 2 and two LMI
approaches of Theorems 1 and 2. Firel, the ARE approach
can yield the solution by solving a Riccati equation which
is the equality version ol {26) in Remark 2.

Next, two reliable £, slate-leedback conirollers are
bounded in the sets A, of (23) and A, of (24). Now,
define a constrawt set [, which describes LMIs in case of
wp Tailure {wy=1wu) as

nN={({V, Vo, X)eRxR» R

X0 and (X—1)7+(17+1)%¢1} 9

which denoles inside a cylinder in (17, V5, X) space. 15
describes LMIs in no failure ( x5=2) as

Iy={{V,, V3, X;eRxRxR . X>0 and

-+t Lo vy B9
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which denoles inside an ellipsoid in (17, 15, X} space.
Then, the coniroller gaing wusing Theorem 1 c¢an be
determined by A= NI On the other hand, the controller

gains using Theorem 2 is bounded in LMIs (16) as the
following set

Ly={{V,, Vo, X)eRxRx R X>0 and
(XD D ey G
which denotes inside an cllipsoid in (¥, I3, X} space
(smaller than (50)). Moreover, [, herein is equivalent to
A All reliable control desipns are depicted peometrically

in Tig. 2. It shows how much convex hound the reliable
H., controllers can atlain in a geometrical sense. The [act
that 7, and P, are away from I7(\J% or Iy means thal
the conventional 1.Q approach does not meet the H. norm
bound. Moreover, Corollary 1 coincides with the fact that
N (a cylinder with ellipsoidal edge) includes the
ellipsoid 7. This simple example validates the LMI
approaches of rcliable H.. state-feedback control design.
With this [ramewark, More complex multiohjective
problems such as mixed H,/H. control problem can be
solved by intersecting the constraint set or A, with level
sets of additional design objectives (See, for instance, [7]).

Fig. 2. Geometric representation of A, reliable control

designs.

Example 2 : Consider the linear uncertain system with
three inputs

o1 0 0 05
Xl = Ho 0 1%‘ 0 o]m)[ 11?8} %8
0 —8 —5 1651 0 .
‘o.z 00 " 'o.om] ,
10 0.2 0|ald+|0.001]wn
¢ 01 0,001 (52)
0.9 0.6 0.1 U6 0
_lo o o 0.3 0 0], ;.
HH = 8 0 0 x(D+ 0 oa 0 2l f
o 0 0 0 0 0.3

where the uncerrain matrix F(# is zero or time-varying as

=3 o] o FO = ytes )

The gpectrum of A is pgiven by A(A)=1{0, —2,—3}.
Note that the nominal system has an unstable mode. We

compare a reliable state-foedback controiler for nominal
case ( F(H=0]) with a robust and reliable state-feedback
controller for time-varying uncertainty. For any given
unreliable actnator set (2, these can be obtained by each
solving LMIs from Theorem 1/Theorem 2 and Theorem
3/Theorem 4. Through iterative process to me Tyace{ )
from the MATLAB LMI solver, minimum H.-norm bound
Ymo values according lo the set of unreliable actuator

failures are obtained as Table 2.

Table 2. Minimum /A, norms{ v.,) for robust and
reliable controls.

]

no lailurc | 2y [ailure | 29 failure | 2, 2 falure

Approach ( ™
ne o) (ue= ) (g ) (gl wl)

Reliable H.
Contral

0,0020 (2557 0.1921 0 4696

Rabusi&Rehabla

H.. Control 0.0023 0 4395 02415 2.53158

Example 3 : Consider wghe linear uncermain system

with three inpuls

2 1 1 1] |10 |
a5 0 o 1 |oo|marte -1 0
) S A e A R AP |
—2 -1 2 -1 lo1
010 1
+éggu(z)+?w(1‘) (53)
001 0
10 —10 000
e 00 0 0| 100
F-183) 00 0 D:c(f)\.fOJﬂl(]]u(n
00 0 0 001

where the uncertain matrix F{# is time-varving as

_ 1
F ﬂf{ sinD(Et) 0}

Assume that the reliable actuator and the unreliable
actuator correspond 10 wp=w; and wo=[1u; uy] ¥, Tespec-
tively. Moreover, we let the parameter y to be 3. The
spectrum of A is given by Inimiz A(A)={—1.3150 £2.91944,
0.1906, ~2.5585}. Note that lhe nominal system has an
unstable mode. We design two robust and reliable
state-feedback controllers for which the closed-loop sysiems
satisfy H. norm bound y. These can be obtained each by
solving LMIs from Theorem 3 and Theorem 4. Their
controller gains K, and X,, whose design objective is to
winimize Trace( P) for the LMI saolver, are

68.084 83.770 34.693 26.865
66,985 §8.238 J6.158 31,146
[182.629 275.280 119.513 82.049

K

[68.338 99.558 43.145 30.721]

132.858 182.629 74.626 58.54d
55.245 T1.353 29.562 25.785

I{g =

For simulation, the exogenous inpul (£ is assumed as

— [2 where h={=10
ut) {0 atherwise
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Since this uniform function w(#H in time-domain
corresponds to a sinc function 10 frequency-domain, we can
say the exogenous input w=L,[0, o). For actuator failure,
w (D and/or ,(# are assumed to be failed in the interval
h=t<lh.

We simulated the designed control system with plant
having various failure types as described by the following
cases.

Case 1 Hard failure (hard-zero) :

w; =0 where H={<15,
ua=0 where 3<i<10

Case 2 Soft failure (soft-bias) :

[ :; : zéi } where 5<1<15

The simulation results are given in Figures 3 and 4 which
show time responses of the controlled output =z {solid line)

and the control input g (solid linc), u,(dot-dashed line),
and wy(dotted line) in cases of using K, and K, res-
pectively. Note that, in these figures, both F.. controllers
meel the disturbance attenuation bound » against the
addilive disturbance including actuator [ailure signal,

Regulaled oulpyl z

=

T T T T g
0
i - m |
L
Al ]
15} ]
2 . L \ L L | . r |
0 2 4 § 10 12 14 16 8 20
time(t)
2 Conlroller output u
1t ]
0 T T
v i 1
B I I
al i 0
\ o RN
3 -7
40 ﬁ "4' ili !‘! 1‘0 1‘2 i4 1‘5 1‘5 20

lmedly
Fig. 3. System responses for Case ! with LMI1 Con-
troller 1V (—azy, 2y 3 — * — e} 7" wy)

Reguiated oulpyl z

02 T T T T T T T T
9 /_f
02z E
®
n04 R
D6 i
Qar 4
R L L L | " , .
o 2 4 & 10 12 14 18 i8 20
ume(ly
2 Caontroller outpul u
T r T T T T
1k 4
0
1 ]
Al
. . . ) . s L
40 2 4 -} 12 14 15 18 20

10
bnedt)

Fig. 4. System responses for Case 2 with LMI Con-
troller 2 (— a2, w; — - — w9, 0 )

although K, optimized from broader selulion set is smaller

-

{more suboptimal) than £&,. Fig. 3 shows that the proposed
controller stabilizes the uncertain system against maximum
as well as partial hard failures of unreliable aclvators; The
contralled output docs not diverge in spite of u, failure at
=8, On the other hand, Fig. 4 exemplifies the guaranteed
slability with soft [ailure which makes the uvnreliable
acluators to bias, nol fo stick a value. Concludingly, Lhe
proposed comntrollers guarantee the closed-loop slability wilh
the given H. attenuation specilication and at the same lime
tolerate various actuator failures irrespective ol those Lypes.

V. Concluding remarks

We presenl conlrol algorithms using LMIT approach for
robust and rcliable /.. slale-feedback control of linear
uncertain  systems with actuator failure, This results is
altenalive lo previous Riccali solutions. The controller gains
are oblained by numerically selving the LMIs as a convex
optimization problem. The resultanl system is reliable in the
sense Lhat il has robust stability and 4, disturbance

attenuation peiformance nol only when all actualors are
operating normaily, but also when some actuators among a
prespecified set of unreliable ones become [aully. This
result is also validated via several examplcs Throngh a
comparative study, the convexity of the two proposed
controllers is shown geomelrically. Another example shows
that shese H. controllers is confined to different solution
sels, i.e., single or mulliple LMI constraint{s). but bath meet
the given specification abowl H,, disturbance attenuation

and reliability irrespective of bard or soft (ailure.

References

[1] S. Boyd, L. ElGhaoui, E. Teron, and V. Balakrishnan,

Linear Maix Inequalities in Sysiem Cownfrol Theory

(STAM Studies in Applied Mathematics). vol 15, STAM,

Philadelphia, 1994,

P. Gahinet and P. Aparian, “A linear matrix inequalily

approach to H.. control,” It J of Robust and Nownli-

near Contiv, val 4. pp. 421-448, 1994.

[3] P. Gahinet, A, Nemirovski, A. J. Laub, and M, Chilali,
LMT Contro! Toofbox. The MathWorks, Matick, MA.,
1995,

[4] 1. C. Geromel, J. M. Bernussou, and M. C. de Oliviera.
" Hy-norm optimization with constrained dynamic outpul

”»
1

2

—

feedback controllers: decentralized and reliable control
IEEE Trans. Awfowmat Cordr., vol. 44, no. 7, pp. 1449-
1434, 1999

[5] 1. €. Geromel, P. L. D. Peres, and J. Bernussou, “On
a convex paramcter space method for linear contral
design ol uncertain sysiems,” SIAM J. Conir. Optimiz.,
vol 20. no. 2, pp. 38[-402, 1991,

[6] K. Gu, * H. conirol of systems under norm bounded
uncertainties in all system matrices,” [EEE Trans
Automat. Comir., vol. 39, no. 6, pp. 1320-1322, 1994,

[7] P. P. Khargonekar and M. A. Rolea, “Mixed I, /H.,

conlrol: A convex oplimization approach,” [EEE Irans.



Transaction on Control, Automation, and Systems Engineering Vol. 2, No. 1, March, 2000 35

Autemai. Contr., vol. 36 no. 7, pp. 824-837, 1991,

[B] C. Scherer, The Riccati inequality and the siate-space
Ho-optrmal controal, Ph. D Thesis, Univ. Wurgburg,
Germany, 1990.

[9] C. Scherer, P. Gahinel, and M. Chilali, "Multiobjective
output-feedback control via LMI optimization,” [EEE
Trans. Automat. Confr., vol, 42 no. 7, pp. 896-911,
1997.

[10] C. J. Seo. A study on robust and religble H., control

for uncertain linear systems. Ph. D). Thesis, KAIST,
1595,

Seong-Woo Kim

' Seong-Woo Kim was bom in 1969,
Korea. He received B.S., M.S. and Ph.D.
degrees in  Electrical Enginecring at
KAIST (Korea Advanced [nstitute of
. Science and Technology) in 1991, 1993,
and 1999, He is currently a senior

rescarcher al ETRI (Korea Electronics and Telecommuni-
calions Research Institute). He is interested in real-time
systemn, robusl and reliable control, and intelligent control.

Byung Kook Kim

Byung Kook Kim received the B.S.
degree in FElectronics Engineering from
Seoul National University in 1975 and
the M.S. and Ph.D. degree from the
KAIST in 1977 and 1981 respeclively.

===k - Dr. Kim was a manager and founder ol
the Calibration Laboratory, Woojin Instrument ColLtd in
1981. His visiling researches include Electrotechnical
Laboratory, Tsukuba, Japan in 1993, and the Univ. of
Michigan, Ann Arbar, Michigan in 1996. He is curently a
Professor of the Departmeni ol Electrical Engincering at
KAIST.  His research interests include reliable process
control, real-time systems, mobile robot sensing and
navigalion. and manipulator control.

[11] D. D. Siljak, “Reliable control using multiple control
systems,” I, J Control, vol. 31 no. 2, 1980

[12] R. I. Veillette, “Reliable linear-quadratic state-feedback
control,” dutomatica, vol. 31 no. 1, pp. 137-143, 1995.

[13] R. J. Veillette, J. V. Medanic, and W R. Perkins,
“Design of reliable control systems,” [EEE Trans.
Automal, Contr., vol. 37 no. 3, pp. 290-304, 1992.

[14] L. Xie and C. E. de Souza, “Robust .. control for
linear systems with norm-bounded {ime-varying
unceriainty,” IEEE Trans. Awfomal. Centr., vol. 37, pp.
1188-1191, 1992,

"' Chang-Jun Seo

m%;‘ Chang-Jun Seo was bom in 1965 Korea.
= He received B.S degrees in Electronic

Engineering at Kyungpook WNational
University in 1989 and M.S. and Ph.D.
degrees in FElectrical Engineering at
KAIST in 1991 and 1996, respeclively.
He is curtemly an associate prolessor of the School of
Electironic  and  Telecommunication Engineering at  Inje
University. His curenl reserarch interests include real-time
control systom, robust and reliable control, and process
control.



