• 제목/요약/키워드: Linear scheduling

검색결과 190건 처리시간 0.027초

NEW TREND OF SCHEDULING IN LINEAR CONSTRUCTION PROJECT

  • S. Sankar;J. Senthil
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.917-923
    • /
    • 2005
  • Scheduling is one of the main functions in construction project to determine the sequence of activities necessary to complete a project. The scheduling techniques provide important information crucial to a project's success. Highway construction project the paving activity can be considered a linear activity. Linear scheduling technique may be better suited for linear projects than other scheduling techniques. A new type of scheduling in linear project is calling Linear Scheduling Model (LSM). The Project monitoring and controlling is very ease to identify that all the stage of linear project and have more advantages.

  • PDF

선형 공정계획 모델의 액티비티 관계의 경계조건 분석 (Analysis of Boundary Conditions for Activities' Relationships in Linear Scheduling Model)

  • 류한국;김태희
    • 한국건설관리학회논문집
    • /
    • 제12권1호
    • /
    • pp.23-32
    • /
    • 2011
  • 국내 일부 건설사는 초고층 건축공사와 같이 반복 공종이 많은 건축물에 일종의 선형 공정계획인 택트 공정계획을 수립하고 수행하고 있다. 선형 공정계획 모델(Linear Scheduling Model: LSM)은 작업 공간과 시간의 정보를 제공하는 시각적 도구로써 연구가 되어왔다. CPM 네트워크 공정표의 구속조건(종료 후 종료, 시작 후 종료, 종료 후 시작, 시작 후 시작)과 마찬가지로 선형계획모델 또한 작업간의 관계간의 구속조건이 발생한다. 특히, 네트워크 공정표를 호환하기 위하여 작업간의 중요 속성간의 관계성의 경계 조건을 정의하는 것이 필요하다. 따라서 본 연구는 선형 공정계획을 수립 시 발생하는 액티비티간의 공간상의 경계조건을 분석한다. 또한 선형 공정계획의 액티비티 간의 관계성을 고려하여 현재 일부 건설회사를 중심으로 사용하고 있는 택트 공정계획에 제안한 경계조건을 반영하여 택트 공정계획 수립과 관리를 위해 고려해야 하는 주요 사항을 제시하는 것이 본 연구의 목적이다.

FMS 스케쥴링 신경회로 (Linear programming neural networks for job-shop scheduling)

  • 장석호;남부희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1095-1098
    • /
    • 1993
  • This paper presents linear programming neural networks for job-shop scheduling. The starting times of tasks and constraints are formulated as the linear programming problem. A modified Hopfield neural network is proposed for solving job-shop scheduling.

  • PDF

A Stochastic Linear Scheduling Method using Monte Carlo Simulation

  • Soderlund, Chase;Park, Borinara
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.169-173
    • /
    • 2015
  • The linear scheduling method or line-of-balance (LOB) is a popular choice for projects that involve repetitive tasks during project execution. The method, however, produces deterministic schedule that does not convey a range of potential project outcomes under uncertainty. This results from the fact the basic scheduling parameters such as crew production rates are estimated to be deterministic based on single-point value inputs. The current linear scheduling technique, therefore, lacks the capability of reflecting the fluctuating nature of the project operation. In this paper the authors address the issue of how the variability of operation and production rates affects schedule outcomes and show a more realistic description of what might be a realistic picture of typical projects. The authors provide a solution by providing a more effective and comprehensive way of incorporating the crew performance variability using a Monte Carlo simulation technique. The simulation outcomes are discussed in terms of how this stochastic approach can overcome the shortcomings of the conventional linear scheduling technique and provide optimum schedule solutions.

  • PDF

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

APPLYING A STOCHASTIC LINEAR SCHEDULING METHOD TO PIPELINE CONSTRUCTION

  • Fitria H. Rachmat;Lingguang Song;Sang-Hoon Lee
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.907-913
    • /
    • 2009
  • Pipeline construction is a highly repetitive and resource-intensive process that is exposed to various constraints and uncertainties in the working environment. Effective look-ahead scheduling based on the most recent project performance data can greatly improve project execution and control. This study enhances the traditional linear scheduling method with stochastic simulation to incorporate activity performance uncertainty in look-ahead scheduling. To facilitate the use of this stochastic method, a computer program, Stochastic Linear Scheduling Method (SLSM), was designed and implemented. Accurate look-ahead scheduling can help schedulers to better anticipate problem areas and formulate new plans to improve overall project performance.

  • PDF

선형 공정계획 모델의 작업 관계성 적용 방법 (Application of Work Relationships for Linear Scheduling Model)

  • 류한국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.131-133
    • /
    • 2010
  • As linear scheduling method has been used since 1929, Empire State Building linear schedule, it is being applied in various fields such as construction and manufacturing. When addressing concurrent critical path occurring on linear schedule of construction, the empirical researches stress the resource management which should be applied for optimizing work flow, flexible work productivity and continuos resource allocation. However, work relationships has been usually overlooked for making the linear schedule from existing network schedule. Therefore, this research analyze the previous researches related to linear scheduling model and then propose the method that can be applied for adopting the relationships of network schedule to the linear schedule.

  • PDF

FLEXIBLE OPTIMIZATION MODEL FOR LINEAR SCHEDULING PROBLEMS

  • Shu-Shun Liu;Chang-Jung Wang
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.802-807
    • /
    • 2005
  • For linear projects, it has long been known that resource utilization is important in improving work efficiency. However, most existing scheduling techniques cannot satisfy the need for solving such issues. This paper presents an optimization model for solving linear scheduling problems involving resource assignment tasks. The proposed model adopts constraint programming (CP) as the searching algorithm for model formulation, and the proposed model is designed to optimize project total cost. Additionally, the concept of outsourcing resources is introduced here to improve project performance.

  • PDF

멀티프로세서 설계를 위한 Linear Data-Row Graph의 최적화 ILP 알고리즘 (An Optimal ILP Scheduling Algorithm on Linear Data-Flow Graph for Multiprocessor Design)

  • 김기복;인치호
    • 대한전자공학회논문지SD
    • /
    • 제42권6호
    • /
    • pp.49-58
    • /
    • 2005
  • 본 논문에서는 멀티프로세서 설계를 위한 동질적인 동기 데이터에 의해서 표현되는 LDFG(Linear Data-Flow Graph)의 최적화 ILP (Integer Linear Program)알고리즘을 제안하였다. 이 논문에서 제안된 연산들은 데이터의 종속적 의미를 담고 있지 않으며, 그러한 알고리즘을 위한 스케줄링은 시간 컴파일에 의해서 결정되어지며 충분한 정적 중첩 스케줄링이 고려된다. 제안된 중첩 스케줄링에서는 모두 선형의 동일한 스케줄링과 동일한 처리장치 할당한 것을 의미한다. 본 논문에서는 자원의 제약 하에서 스케줄링을 하였으며, 멀티프로세서 설계를 위한 LDFG의 최적화를 위하여 문제를 ILP 공식화하여 해법을 제공하였다. 벤치 마크 실험 결과들은 제안된 스케줄링 방법의 효율성을 검증하였다.

SIMULATED ANNEALING FOR LINEAR SCHEDULING PROJECTS WITH MULTIPLE RESOURCE CONSTRAINTS

  • C.I. Yen
    • 국제학술발표논문집
    • /
    • The 2th International Conference on Construction Engineering and Project Management
    • /
    • pp.530-539
    • /
    • 2007
  • Many construction projects such as highways, pipelines, tunnels, and high-rise buildings typically contain repetitive activities. Research has shown that the Critical Path Method (CPM) is not efficient in scheduling linear construction projects that involve repetitive tasks. Linear Scheduling Method (LSM) is one of the techniques that have been developed since 1960s to handle projects with repetitive characteristics. Although LSM has been regarded as a technique that provides significant advantages over CPM in linear construction projects, it has been mainly viewed as a graphical complement to the CPM. Studies of scheduling linear construction projects with resource consideration are rare, especially with multiple resource constraints. The objective of this proposed research is to explore a resource assignment mechanism, which assigns multiple critical resources to all activities to minimize the project duration while satisfying the activities precedence relationship and resource limitations. Resources assigned to an activity are allowed to vary within a range at different stations, which is a combinatorial optimization problem in nature. A heuristic multiple resource allocation algorithm is explored to obtain a feasible initial solution. The Simulated Annealing search algorithm is then utilized to improve the initial solution for obtaining near-optimum solutions. A housing example is studied to demonstrate the resource assignment mechanism.

  • PDF