2005 68 TAESEE

=& 2005-42SD-6-7

HE|Z2 AN HAZ

=&X

Ha4a2AHASDHEGEE 49

3 Linear Data-Flow Graph9]

A3} [P gugs

(An Optimal ILP Scheduling Algorithm on Linear Data-Flow Graph
for Multiprocessor Design)

4 7] =

, o

*%k

= 5

(Ki-Bog Kim and Chi-Ho Lin)

(=]
i

o
=

13

B =RAME dEZ2Z N AAS 98 5349 E7] doleld o314 #35+ LDFG(Linear Data-Flow Graph)¢ 3
23} ILP (Integer Linear Program)@i2]5-& Attt o =io)A AtE e HojHY F43 gnjg @3 A
gom, 3t dneEe g 2ASHS AR Audd oA AAHo A FRE AR FH 2AEH] myEh At
4 4 2AEYAINE BF A8 Y98 2ASYY YT AFA I3 Zi% ou3ie}, B =RoMe e A

sl 2A2RE seH, BEZ2AN HAE
WA vt AE 2H4EL AgE 2AF HY agds

Uil —

913 LDFGe] #7388 93

oq ILP T4 gate] syS AgstHch

% ssic.

Abstract

In this paper, we propose an optimal ILP scheduling algorithm for multiprocessor design on LDFG{(Linear Data-Flow

Graph) that can be represented by homogeneous synchronous data-flow. The proposed computation in this paper does not
contain data-dependent, all scheduling decisions for such algorithms can be taken at compile time, only fully static
overlapped schedules are considered. It means that all linear have the same schedule and the same processor assignment.
In this paper, the resource-constrained problem is addressed, for the LDFG optimization for multiprocessor design problem,
formulating ILP solution available to provide optimal solution. The results show that the scheduling method is able to find

good quality schedules in reasonable time.

Keywords ¢ ILP, LDFG, Scheduling, Multiprocessor, Overlapped, Constraints

I. Introduction

The basic scheduling techniques are ASAP(As
Soon As Possible) scheduling with no constraints of
usable Hardware resources’ number or action—speed
and ALAP(As Late As Possible) scheduling.

Many algorithms in the field of DSP(Digital Signal

TegAsd, v A, Agddn PFeE gy
(Department of Computer Science, Semyung
University)

ez} 2005:33418¢Y,

& FRLEU: 200596H€14Y

(413)

Processing) belong to this class. An algorithm that
that
simultaneously, offers possibilities of exploiting the

contains computations can be executed
parallelism present by implementing it on appropriate
hardware such as a multiprocessor system. A
schedule is called non overlapped if all operations
belonging to the same linear have to finish before the
operations of the next linear can start; if operations
belonging to different
simultaneously, the schedule is called overlapped.

Overlapped scheduling is sometimes also called loop

linear can execute

50

folding "™

The multiprocessor scheduling problem for iterative
algorithms has received quite some attention in the
last years. However, most of the publications have
considered the simplified problem in which the time
to communicate data from one processor to another
was negligible. When communication.delays are taken
into account, often target architectures are considered
in which setting up a communication or performing
the transfer of a single data word requires tens or
even hundreds of system clock cycles. In such
architecture, it only makes sense to have parallel
implementations if the basic tasks performed by a

single processor, require a similar number of

cycles.[H]

In this paper, however, fine-grain parallelism is
considered. The basic tasks are primitive operations
and the

processors in the target architecture are supposed to

such as additions and multiplications
transfer a data word in just a few cycles. This work
presented here extends the one reported in based on
integer linear programming. Using ILP has several
advantages. First of all, it leads to exact solutions
rather than approximate ones. Second, being a
general-purpose optimization method, general-purpose
tools, so—called ILP solvers, are available to provide
the solution once the ILP formulation of a problem is
available. An important disadvantage of ILP is its
NP-completeness. Computation times associated to
ILP usually become too large for cases that are
slightly more complex than trivial. However, the ILP
formulation of is such that many large benchmarks
are solved in a reasonable time." ™

In the rest of this paper, first the scheduling
problem will be defined more precisely. Then, the ILP
constraints used to solve the problem will be
explained. Finally, the experimental results obtained

will be presented and c_ompared to other results.
H. Problem Definition -

The LDFG consists of a node set V and an edge
set E. The node set contains computational nodes

HE|ZZMM HHE B Linear Data—Flow Graph9 X3 iLP L3125

(414)

2%t C{X|e HE{e| LDFG
LDFG of a second-order digital
filter section.

a8 1.
Fig. 1.

(such as additions or multiplications) collected in the
subset N, input nodes contained in the subset IN,
output nodes contained in the subset OUT, and delay
nodes (a delay node stores data received at its input
during the current linear and makes this data
available at its output in the next linear).

An example of an LDFG is shown in Figure 1 that
represents a second-order digital filter section. In the
figure, delay nodes are indicated by 7. Data-flow

computation is best understood by considering tokens
that carry data along edges of the LDFG. A
computational node starts its computation (one says
that it fires) when all its incoming edges have
received a token; it consumes these tokens, and
produces a token carrying the result of the
computation on its outgoing edges when it has
finished computing. Input nodes only produce tokens
and output nodes only consume tokens.

Although delay nodes help to better visualize a
computation an LDFG, it is better to replace paths
with delay nodes between computational or I/0 nodes
by direct edges with delay buffers, one buffer for
each delay in the path.

The buffers are supposed to contain initial tokens
such that the computation can start. In the rest of
this text, it will be assumed that all LDFG have been
modified in this fashion. The existence of an edge

2005 6@ TAESS: ==X M 42 2 SDH 6 =

from a node 1 € V to a node i, € V in the

modified LDFG will be denoted by =ip. The number
of buffers (delays) on the edge will be denoted by Di,
ip. Each edge i = 1p
constraint, meaning that i and ip should be scheduled
sufficiently apart.

indicates a precedence

The target architecture consists of a given network
of processors or functional units. Each processor can
execute all or a subset of the computations contained
in the LDFG. It is assumed that a processor can
perform a single operation at a time (no internal
parallelism). The time necessary to execute a specific
operation (e.g. an addition) is the same for all
processors. For a computational node ¢ € N, this
time is expressed in multiples of the system clock
time and denoted by ;. The hardware is allowed to

be pipeline; the pipeline period for i € N is denoted
by L; (L; = C;) when there is no pipelining). The
interconnection network can also be described as a
graph with a vertex set P representing functional
units {(processors) and an edge set W representing
unidirectional or bidirectional links. Each link is able
to transfer only a single data word at a time. The
time to transfer a data word through a link is the
same for all links and equals & cycles of the system
clock. Parallel links can be used to model the

gl 2. HIX|ol3E sl AMBE HEIZE2MAM FAX
Fig. 2. Muliiprocessor configurations as used for the
benchmarks.

(415)

o1

possibility of transferring multiple data words
simultaneously between a pair of functional units.
Figure 2 examples of typical
architectures that have been used for benchmarking.

Note that some of the processors carry the labels IN

shows some

and OUT: these labels indicate at which processor the
inputs to the computations arrive and at which the
outputs have to be delivered.

The problem formulation allows a separate
processor assignment for each have the input and
in the LDFG as part of the
specification. The assigned processor is indicated by
FIXki with i € IN U OUT. Also the times at which

inputs are available and outputs should become

output nodes

available can be specified separately for each input
and output. These times are indicated by FIXj i with
i eINUOQOUT

Now that the main aspects of the problem have
been presented, the problem to be solved can be
formulated. Given an LDFG, target
architecture, a linear period and the times and

are: a
processors for the inputs and oufputs.

The goal of an ILP formulation is to check
whether a mapping of the LDFG on the target
architecture exists that respects the linear period and
the timing constraints on inputs and outputs. If it
exists, the mapping should be reported. For each
' detail
executed at each clock cycle (if any) and for each
link it will detail which data is transported at each
clock cycle (f any). Besides, the result should not

processor, it will which computation is

contain spurious data transports. The main goal is to
solve the resource-constrained scheduling problem.
Only the LDFG, the target architecture, the input
times and the processor assignment for the inputs
and outputs is considered given. The primary
objective is to find the solution with the fastest linear

period 7;. The secondary objective is to minimize
the latency for the minimal linear period. When the
LDFG has a single input and a single output, the
the the

consumption of the input and the production of the

latency 1s time difference between

output. Otherwise, latency can be defined between

52

each of the input-output pairs. Values for the output
times FIXji with i € OUT can be derived from
latencies and the input times. In the rest of this
paper, it will be assumed that there is a single input
and a single output. The latency associated with this
pair will be denoted by L,. With 7 and L, fixed,
the scheduling problem becomes a decision problem:
there either exists a solution or not.

Each new value combination of the parameters TO
and Z, will result in a different ILP. In order to

achieve the main goal, the ILP solver is called in the
body of two nested loops: the outer loop increments
74 until a solution is found and the inner loop varies

L,. The next section provides more information on

the values that the parameters can assume.

1. Preparatory Calculations

Although one could directly define the constraints
of anlLP formulation from the problem description, it
is worthwhile to analyze the description first. In this
way, the numbers of variables and inequalities in
which the reduced
significantly. This leads to smaller search spaces and

variables occur can be
shorter solution times.

In order to reduce the search space, one should
consider the precedence constraints. The fact that the
input and output times as well as the linear period
are known, and that a certain execution order has to
be observed, makes that a scheduling rangeman be
computed for each computational node. This is an
interval consisting of the earliest and latest clock
cycles in which the computation can start. The
earliest time is called the as soon as possible (ASAP)
time while the latest time is called the as late as
possible (ALAP) time. For a given LDFG, a T0,
input and output times, the scheduling ranges can be
computed using longest-path algorithms for graphs,
such as the Bellman-Ford algorithm. For each
computational node ? € IV the ASAP and ALAP

times will be denoted by ASAP respectively

ALAP,. The range will be denoted by

HE|ZTZMA HHE Ft Linear Data—Flow Graph® #®3} iLP S18iE

(416)

Rz, : Ry, = [ASAP,, ALAP,].

ASAP and ALAP times may have negative values
(due to the delay elements that lead to negative
offsets in precedence constraints). For reasons of
convenience, a constant value is added to all ASAP
and ALAP values such that the minimum ASAP
The maximum AILAP value
determines the universe of time values that have to
be taken mapping
computations on time instants. ALAPmax will denote
this maximum. The scheduling process should also

value becomes 1.

into consideration - when

route the transports of data between processors. Note
that the mapping of data tranéports is a one-to-many
mapping as opposed to the one-to-one mapping of
operations. A transport will in general claim different
links at different time instants in order to make sure
that data produced by some computation reaches all
processors that consume these data. On the other
hand, just a single processor needs to be found on
which to execute a computational node. Transports
also have scheduling ranges. The earliest, start time
for the transport of the result of computational node i
€ N will be denoted by ASAPyi and can easily
computed from the ASAP time of the computation
itself: ASAPyi = ASAPi + C

An expression for the latest start time for the
same transport denoted by ALAPyi is somewhat
more complex and considers all edges i = ip

outgoing from I

ALAP, = “;;X {Di,ipTo+ ALAPip — 6} (1)

The maximum is required here because the
transport of data along one edge may in principle be
independent from the transport of the same data
along other edges. In order to reduce the search
space, meaningful values for 73 and Lt should be

tried. There are several factors that contribute to the
lower bound of 7j, called the LPB (Linear Period

Bound). It is well known that a lower bound on the
linear period can be derived from the topology of the
LDFG when the LDFG contains loops {each loop

20051 62 TXAEEE =AM 42 H SDHE =

contains at least one delay element in order for the
LDFG to be computable). The bound follows from
the fact that an algorithm should be executed
sufficiently slowly such that data produced in one of
the nodes in the loop can return to the node in time
for the computation of the next linear. Assuming that
all loops in the LDFG are contained in the set L, the
bound is given by:

2)

The loop that leads to the maximum value in the
expression is called the critical ‘loop. It is not
necessary to enumerate all loops. Many efficient
algorithms exist that can compute the bound.

Another cause for the existence of a lower bound
on the linear period lies in the resource-constrained
nature of the problem. A processor can at most be
utilized for 100%:

G
i E

LPB2 = ‘—lp—l

3)

Yet another trivial lower bound is given by the
duration of the IPC time or by the longest pipeline
period of a computation on a processor. In a fully
static schedule the linear period should be larger that
this duration. Combining all bounds, one gets the
following expression for the LPB:

max

LPB = max (LPBI, LPB, 8, " Nu) @)

The of the three bound

computations gives a minimum value for 7j. This

maximum lower

value has been used in the implementation reported
in this paper. aking the delay time 8 for IPC into
account can choose the lower bound for the linear
period even tighter.

This will be illustrated for the LDFG of Figure 1
assuming that an addition lasts one clock cycle, a
multiplication two and a data transports two. The

(417)

53

critical loop is ¢4 —c2—dl. This loop implies a
linear period of 3 (a total duration of computations of
3 to be executed within a single linear) and needs to
be executed in' a single processor in order not to
loose time on IPC. The LDFG has a second loop that
shares node ¢2 with the first: c3-cl-c2-d1-d2. The
processor executing the critical loop when 7 = 3 is
fully occupied, implying that computations ¢3 and cl
should be executed on a second processor and that
communication to and from c2 on the other processor
is necessary. The total time to execute the second
loop then becomes 8 (2 additions, 1 multiplication and
2 IPCs) for which two linear are available (2 delay
nodes in the loop). The conclusion is that no schedule
with 7 = 3 can exist and that the tighter lower

bound of 7§ = 4 should be used.

Another reasoning to come to the same conclusion
starts ~ with the that the
c3-cl-c2-d1-d2 contains two delay nodes. The total

duration of computations in this loop is 4. Because of

observation loop

the fully-static scheduling requirement, any schedule
with 73 < 4 will necessitate that the execution of

the loop is distributed across two or more processors.
This immediately means that at least two [PC delays
have to be added to the total duration of the loop
resulting in a total loop execution time of 8 for two
linear or 4 one linear. Finding a tighter lower bound
in this way is quite complex for the general case. 7

the knowledge of the authors, no general procedure is

known for computing a lower bound for 7 that
takes IPC into account. A lower bound on L, is quite

straightforward to find.
One simply computes the ALAP time of the
output. An upper bound on L, is given by the sum

of the durations of all computations in the LDFG plus
d times the number of links in the shortest path from
the input to the output processor.

This is an upper bound because all computations
can take place on a single processor and sufficient
time is available to transport the data from input to
output. processor transporting the input from an

54

incoming link.

Minimize: Y Y] ZYz,j,z’

Vi e INUN,Vj € SLOIS, Vie W (5

IV. ILP Constraints

The variables of the scheduling problem are:
X, ;55X ;x =1 implies that computation ¢ € N
starts at time J on processor k.

Y, ;5Y, ;=1 implies that data produced by
computation ¢ €INUN is sent at time j through
data transportation link ¢ .

;3,00

The constraints for the scheduling problem have
been collected in Figure 3. A short explanation of
them will be given here.

Equation 6 expresses the fact that at most one
operation is executed at the same time on a

processor. For every processor, the entire universe of

HE|ZZMAM HAE Q6 Linear Data—Flow GraphQl Z&3l (LP 418 &

time instants (1 < j <ALAPmax) has to be scanned

for conflicts. Note that this universe is never smaller
than T0. This means that if a computation il has
been mapped to start on some time instant j on a
processor k, no other computations 12 can start for
the duration of the pipeline period Li2 before time
instant j or any time instant that is separated a
of 7y from j. the

multiple For this reason,

formulation not only considers the scheduling range
Rxi of an operation, but its iterated version with a
period of 7j. The set of time instants that is
obtained in this way, is called SLOTSxi. One of the
advantages of using this formulation is that no
variables Xi;j;k are created for values of j that do
not make sense.

Equation 7 states that every operation ¢ ‘has to
start on exactly one processor k at exactly one
time 7J.

Equation 8 is the counterpart of Equation 6 for
data transports. Some extensions with respect to

(418)

have been made for handling bidirectional links and
IPC times larger than 1. The set Wb contains all
bidirectional paired links [b, {l,,1,} and al
unidirectional links Ib, = {1, }.

Wherever [, is tested for data conflicts, [, has to

be tested for the same conflicts. The set SLOTSyi is
the counterpart of SLOTSxi for the universe of time
instants available for transportation.

The requirement that data produced by an

operation ¢ passes a link between two processors at

most once is expressed by Equation 9. Equation 10
states that a data transport can only leave a
processor at some time if it had arrived at the
processor at an earlier time or was produced on that
processor itself.

In order to capture the topology of the target
architecture the following notation is used: frl
indicates the processor where a link 1 originates from
and tol the processor that the link connects to.

The correct transportation of input data 1is
controlled by Equation 11. A binary constant is
needed to express the availability of the input i on its

input processor FLX; ;. When input is available after
the defined time of input, FIX;,, becomes one,
allowing input transportations from FIX;,. A
transportation of input i is still possible with a= 0,
because the processor can be a non-input processor
transporting the input from an incoming link.
Precedence relations between computations and
transports, where a computation ip depends on a
computation i or on a result of i from an earlier
iteration, are handled by Equation 8 The constraint
is, in a sense, a counterpart for Equation 10 and
states that the execution of a computational node can
only start if its inputs have been delivered through a
link

processor. A similar situation for data arriving from

in time or produced earlier on the same

an input rather than from another computation- is
controlled by Equation 13.
Equation 14, finally, takes care that an output is

available in time at its destination processor. It is

20059 62 MAZEE =X M 42 F SDH6F

55

Li—1 (ALAP,, - i+q)/T,
X;V{Z{ E Xi,j+p*:/;,—q,k}}§1 15 TO,VkEP 6)
'e =0 (j+p*7},f:)oe SLOTS,
;; M X =1 ViEe N @)
j e SLOPsSz, keP 7
B-1 (ALAPy..— 5+ a)/T,
% ZZ Z Y;,ﬂp*mq,lél 11, Vibe Wb &)
ieTNVUNG=0I€h p=0
G+p*Ty—q) € SLOTSyi
; Y, ;<1 Viee UN,vieWw ©)
je §IoTSyi
Y= 3 Y,wpta Vi€ NVjeE Ry, Vlie W - (10)
Jre BTy, = fri
K,j,l é { E Z Y;,jp,lp-jra} \/Z € Ij\f? v] € Ryz; Vl € W (11)
]'1]71)6(1%’!11 to;, g fr
where : a = . :
0 otherwise
‘X;p,j,k é) . E Y;,jp,l—*—) . AX;,jp,k (V'l,?/p,'l #= Zp)l Vy € R,Eip; Vk € P (12)
p<j+DFT 1 p<i+DF L -G
jpE Ry, top €k ip € R,
Xpin s N Y, ta (VieIN Vip e N|i—ip),Vj€ Ry, Vk € P 13)
p<j+D,*Th 1
Jjp € Ry, to, =k
) 1 if 7= FIXj_, and k= FLXEk,
where = . :
0 otherwise
= 2) Z Yijpit Z}J X, ink
jp<i+ DT jp £ FIXj,, + D, ;* T, - C;
jp € Ry; to;, € k jp € Rz,
(Vie N,Vip € OUT | i—ip), k= FIXk, (14)
a8 3 AHERL ILP 342 e Mt
Fig. 3. The constraints for the iLLP formulation of the scheduling problem.

either produced on the destination or has to arrive
through an incoming link.

It was stated earlier that the ILP formulation
should in principle check whether a solution is
possible for a given 73~L, combination. As such, no

objective function is necessary.

(419

However, the constraints do not prevent solutions
in which data is transported through unnecessarily
long paths or even to processors that do not need the
data. These spurious transports can be prevented by
counting all data transports in the objeétive function
of the ILP problem:

56

V. Experimental Results

"The ILP formulation has been applied to the
combinations of LDFG and target-architecture
benchmarks presented earlier in and listed in Table I
The LDFGs were already given in and are not
included in this paper except for second (Figure 1)
and elliptic (Figure 4). The target architectures are
displayed in Figure 2.

The table 1 gives the durations of additions,
multiplications and IPC for each combination. No
pipelining
computations and the input time is set to 1 in all
benchmarks. The ILP solver BonsaiG was used for
the experiments. It can be freely downloaded from
NEOS or the problems can be submitted to a remote
server runnmng the software.

The Benchmarks A through E were run remotely;
the remaining ones locally on an HP 9000/785/C3000

server.

is assumed for the execution of the

The results are presented in Table I in which

gl 4 5iF #lolH C|X|E EbdE ZE Q| LDFG
Fig. 4. The LDFG of a fifth-order wave digital elliptic
filter, called elliptic.

HEjZ2 MM HHAZ 3t Linear Data~Flow Graph? &3} ILP

{420)

A F #4715 9

they are compared to the results of which were
obtained by an approach based on genetic algorithms
(GAs). From the results, it can be seen that the 7

could not be improved in any of the cases. The
column labeled IPB contains the value computed
according to Equation 1. It can be proved in most
cases, following a reasoning as given earlier in this
paper, that the 7 > IPB that was found, is optimal

in the presence of IPC. As far as the latency is
concerned, several improvements with respect to the
GA approach can be reported. The situation is even
better than can be directly observed from the table
because the GA approach did not route inputs and
outputs to specified processors.

The comparison of the CPU times seems to be in
favor of the GA approach. One should, however, take
into account that the run times reported for GA
isaverages of 50 runs and that not all runs resulted
in the best results reported in the table. The CPU
times for ILP are cumulative counting the times
spent on all TO-Lt combinations until a solution is
found (the GA approach also dynamically increases
these parameters). It has to be observed that
Benchmarks M and N were too complex to be solved
for ILP.

x 1. Hix|olze] A3}
Table 1. The resuits for the benchmarks.
ILP GA
ln o v |m L cpu | TR
L1 4 5 169 | 4 6 s 3
2 4 5 - 4 9 12s 3
3 3 7 244s 3 7 12s 3
4 5 4 4s 5 5 24s 5
5 6 4 758 6 4 258 6
6 3 8 88249s 3 9 27s 3
7 16 9 1s 16 9 33s 16
8 18 10 4s 18 13 43s 16
9 16 30 41s 16 30 27s 14
10 18 31 16s 18 31 33s 14
11 | 18 15 1062s | 18 16 134s 16
1221 14 0s | 21 18 129s 16
B - - 18 20 1lls 16
419 - - 21 14 1ls 16
Notes: (1) ILP-solver time-outs(>10,000s)

(2) First evaluation with local BonsaiG

(3 Tojmia = 18 = IPB

(4) Toimsia = 16 = IPB

(5) Tomsal = 21 = IPB

(6) evaluation time > 48 hours

2005 6% MAESSE =X M 42 H SDAH6 =

VI. Conclusions

This paper has presented an ILP approach to the
overlapped scheduling problem for target architectures
IPC times. The
improves some aspects of the formulation given in.

with non-negligible approach

By its nature, ILP provides optimal solutions and has
exponentially growing computation times. Optimal
results to problems of reasonable size were found
after acceptable computation times.

It tums out that it is feasible to apply ILP to
benchmarks of reasonable size. Improvements can be
expected when the ILP formulation is split into sub
problems that are solved separately. '

References

(1] E. A. Lee and D.G. Messerschmitt, “Synchronous
data flow, ”"Proceedings o the IEEE, vol.75,
no.9, pp. 1235-1245, September19K7.

S.M. Heemstra de Groot, SH. Gerez, and OE.
Herrmann,” Range-chart-guided iterative
data—flow-graph scheduling,” TEEE Transactions
on Circuits and Systems I Fundamental Theory
and Applications, vol. 39, pp. 35-{364, May 1992.
K K Parhi and D.G. Messerschmitt, ”Static
rate-optimal scheduling of iterative data—flow
programs via optimum unfolding, "IEEE
Transactions on Computers, vol. 40, no. 2, pp.
178-195, February 1991. PROGRESS 2000
Workshop on Embedded Systems, Utrecht, The
Netherlands, October 2000.8

S. H Gerez, SM. Heemstra de Groot, ER.
Bonsma, and M.JM. Heijligers, ”Overlapped
scheduling techniques for high-level synthesis
and nmultiprocessor realizations of DSP
algorithms,” in Advanced Techniques for
Embedded System Design and Test, J.C. Lopez,
R. Hermida, and W. Geisselhardt, Eds., pp.
125-150.

G. Goossens, J. Rabaey,]. Vandewalle, and H.
De Man, "An efficient microcode compiler for
application specific DSP processors,” IEEE
Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 9, no. 9,
pp. 925-937, September 1990.

[2]

(3]

[4]

(5]

(421)

57

[6] TF. Lee, ACH. Wu, YL. Lin, and D.D. Gajski,
"A transformation-based method for loop
folding,” IEEE Transactions on Computer—-Aided
Design of Integrated Circuits and Systems, vol.
13, no. 4, pp. 439-450, April 19%4.

V. K. Madisetti, VLSI Digital Signal Processors,
An Introduction to Rapid Prototyping and
Design Synthesis, IEEE Press and Butterworth
Heinemann, Boston, 1995.

(71

[8] J. Sanchez and H. Barral, “Multiprocessor
- implementation models for adaptive algorithms,”
IEEE Transactions on Signal Processing, vol. 44,

no. 9, pp. 2319-2331, September 1996.
S. Sriram and S.S. Bhattacharyya, Embedded

Multiprocessors, Scheduling and Synchronization,
Marcel Dekker, New York, 2000.

[10] D.C. Chen and JM. Rabaey, “A reconfigurable
multiprocessor IC for rapid prototyping of
algorithmic-specific ~ high-speed DSP data
paths,” IEEE Journal of Solid-State Circuits, vol.
27, n0.12, pp. 1895-1904, December 1992.

(9]

58 HE|ZZM M HHE 8 Linear Data—Flow Graph® &3 ILP L12E

A

12l X s(HASY)

19853 StFdigm A=A} Eat
' F A} .
| 1987d SFdistm ojsred

&8t JAHCAD AF

19963 gFdista ok
8} vFAL(CAD AF
1992 ~&E A Mgt HFE s Fug
<F@/AEof 1 VLSI CAD, ASIC A #, CAD &
1e8]Z, SOC A7, RTOS 2 HZE AlxE>

¢

ol

XA 74

4715 o
7 7| 28 Q)
19873 Z2ojsta shA}
2001 Al oisal ohsked
25 MAHSAS AF
2002 BA AWietE e
AR RS WAL
(CAD #%)
2002 ~ @A () AAAAREH ATl
(%) o= Al 21 o]A}
<F@AEE: VLSI CAD, ASIC A, CAD €3

&>

