An Optimal ILP Scheduling Algorithm on Linear Data-Flow Graph for Multiprocessor Design

멀티프로세서 설계를 위한 Linear Data-Row Graph의 최적화 ILP 알고리즘

  • Kim Ki-Bog (Department of Computer Science, Semyung University) ;
  • Lin Chi-Ho (Department of Computer Science, Semyung University)
  • Published : 2005.06.01

Abstract

In this paper, we propose an optimal ILP scheduling algorithm for multiprocessor design on LDFG(Linear Data-Flow Graph) that can be represented by homogeneous synchronous data-flow. The proposed computation in this paper does not contain data-dependent, all scheduling decisions for such algorithms can be taken at compile time, only fully static overlapped schedules are considered. It means that all linear have the same schedule and the same processor assignment. In this paper, the resource-constrained problem is addressed, for the LDFG optimization for multiprocessor design problem formulating ILP solution available to provide optimal solution. The results show that the scheduling method is able to find good quality schedules in reasonable time.

본 논문에서는 멀티프로세서 설계를 위한 동질적인 동기 데이터에 의해서 표현되는 LDFG(Linear Data-Flow Graph)의 최적화 ILP (Integer Linear Program)알고리즘을 제안하였다. 이 논문에서 제안된 연산들은 데이터의 종속적 의미를 담고 있지 않으며, 그러한 알고리즘을 위한 스케줄링은 시간 컴파일에 의해서 결정되어지며 충분한 정적 중첩 스케줄링이 고려된다. 제안된 중첩 스케줄링에서는 모두 선형의 동일한 스케줄링과 동일한 처리장치 할당한 것을 의미한다. 본 논문에서는 자원의 제약 하에서 스케줄링을 하였으며, 멀티프로세서 설계를 위한 LDFG의 최적화를 위하여 문제를 ILP 공식화하여 해법을 제공하였다. 벤치 마크 실험 결과들은 제안된 스케줄링 방법의 효율성을 검증하였다.

Keywords

References

  1. E. A. Lee and D.G. Messerschmitt, 'Synchronous data flow, 'Proceedings of the IEEE, vol.75, no.9, pp. 1235-1245, September 1987 https://doi.org/10.1109/PROC.1987.13876
  2. S.M. Heemstra de Groot, S.H. Gerez, and O.E. Herrmann,'Range-chart-guided iterative data-flow- graph scheduling,' IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 39, pp. 35-{364, May 1992 https://doi.org/10.1109/81.139286
  3. K. K. Parhi and D.G. Messerschmitt, 'Static rate-optimal scheduling of iterative data-flow programs via optimum unfolding, 'IEEE Transactions on Computers, vol. 40, no. 2, pp. 178-195, February 1991. PROGRESS 2000 Workshop on Embedded Systems, Utrecht, The Netherlands, October 2000.8 https://doi.org/10.1109/12.73588
  4. S. H. Gerez, S.M. Heemstra de Groot, E.R. Bonsma, and M.J.M. Heijligers, 'Overlapped scheduling techniques for high-level synthesis and multiprocessor realizations of DSP algorithms,' in Advanced Techniques for Embedded System Design and Test, J.C. Lopez, R. Hermida, and W. Geisselhardt, Eds., pp. 125-150
  5. G. Goossens, J. Rabaey, J. Vandewalle, and H. De Man, 'An efficient microcode compiler for application specific DSP processors,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 9, pp. 925-937, September 1990 https://doi.org/10.1109/43.59069
  6. T.F. Lee, A.C.H. Wu, Y.L. Lin, and D.D. Gajski, 'A transformation-based method for loop folding,' IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 4,pp. 439-450, April 1994 https://doi.org/10.1109/43.275354
  7. V. K. Madisetti, VLSI Digital Signal Processors, An Introduction to Rapid Prototyping and Design Synthesis, IEEE Press and Butterworth Heinemann, Boston, 1995
  8. J. Sanchez and H. Barral, 'Multiprocessor implementation models for adaptive algorithms,' IEEE Transactions on Signal Processing, vol. 44, no. 9, pp. 2319-2331, September 1996 https://doi.org/10.1109/78.536687
  9. S. Sriram and S.S. Bhattacharyya, Embedded Multiprocessors, Scheduling and Synchronization, Marcel Dekker, New York, 2000
  10. D.C. Chen and J.M. Rabaey, 'A reconfigurable multiprocessor IC for rapid prototyping of algorithmic-specific high-speed DSP data paths,' IEEE Journal of Solid-State Circuits, vol. 27, no.12, pp. 1895-1904, December 1992 https://doi.org/10.1109/4.173120