• Title/Summary/Keyword: Linear matrix inequalities

Search Result 331, Processing Time 0.019 seconds

Delay-dependent Fuzzy $H_2/H_{\infty}$ Controller Design for Delayed Fuzzy Dynamic Systems (시간지연 퍼지 시스템의 지연 종속 퍼지 $H_2/H_{\infty}$ 제어기 설계)

  • 김종래;정은태
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.5
    • /
    • pp.19-27
    • /
    • 2004
  • A delay dependent fuzzy $H_2/H_{\infty}$ controller design method for delayed fuzzy dynamic systems is considered. Using delay-dependent Lyapunov function, the asymptotical stability and $H_2/H_{\infty}$ performance problem are discussed. A sufficient condition for the existence of fuzzy controller is presented in terms of linear matrix inequalities(LMIs). A simulation example is given to illustrate the design procedures and performances of the proposed methods.

Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System (비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터)

  • Kim, Ho Jun;Park, Jin Bae;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.349-354
    • /
    • 2015
  • This paper presents the stability conditions of the Takagi-Sugeno (T-S) fuzzy sampled-data filter. The error system between the T-S fuzzy system and fuzzy filter is presented. In the sense of the Lyapunov stability analysis, the stability conditions are given, which can be represented in terms of linear matrix inequalities (LMIs). The proposed stability conditions utilize the different approach from the conventional methods, and have better performance than that of the conventional ones. The simulation example is given to show the effectiveness of the proposed method.

Stochastic Stabilization of TS Fuzzy System with Markovian Input Delay (마코프 입력 지연을 갖는 TS 퍼지 시스템의 확률전 안정화)

  • 이호재;주영훈;이상윤;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.459-464
    • /
    • 2001
  • This paper discusses a stochastic stabilization of Takagi-Sugeno(TS) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delary of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time TS fuzzy system with the Markovian input delay is discretized for easy handling delay, according, the discretized TS fuzzy system is represented by a discrete-time TS fuzzy system with jumping parameters. The stochastic stabilizibility of the jump TS fuzzy system is derived and formulated in terms of linear matrix inequalities (LNIS)

  • PDF

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

Observer Design for A Class of UncertainState-Delayed Nonlinear Systems

  • Lu Junwei;Feng Chunmei;Xu Shengyuan;Chu Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.448-455
    • /
    • 2006
  • This paper deals with the observer design problem for a class of state-delayed nonlinear systems with or without time-varying norm-bounded parameter uncertainty. The nonlinearities under consideration are assumed to satisfy the global Lipschitz conditions and appear in both the state and measured output equations. The problem we address is the design of a nonlinear observer such that the resulting error system is globally asymptotically stable. For the case when there is no parameter uncertainty, a sufficient condition for the solvability of this problem is derived in terms of linear matrix inequalities and the explicit formula of a desired observer is given. Based on this, the robust observer design problem for the case when parameter uncertainties appear is considered and the solvability condition is also given. Both of the solvability conditions obtained in this paper are delay-dependent. A numerical example is provided to demonstrate the applicability of the proposed approach.

Development of Robust Fuzzy Controller with Relaxed Stability Condition: Global Intelligent Digital Redesign Approach (완화된 안정도 조건을 갖는 강인한 디지털 퍼지 제어기 설계: 전역적 디지털 재설계 접근법)

  • Sung, Hwa-Chang;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.487-492
    • /
    • 2007
  • This paper presents the development of digital robust fuzzy controller for uncertain nonlinear systems. The proposed approach is based on the intelligent digital redesign(IDR) method with considering the relaxed stability condition of fuzzy control system. The term IDR in the concerned system is to convert an existing analog robust control into an equivalent digital counterpart in the sense of the state-matching. We shows that the IDR problem can be reduced to find the digital fuzzy gains minimizing the norm distance between the closed-loop states of the analog and digital robust control systems. Its constructive conditions are expressed as the linear matrix inequalities(LMIs) and thereby easily tractable by the convex optimization techniques. Based on the nonquadratic Lyapunov function, the robust stabilization conditions are given for the sampled-data fuzzy system, and hence less conservative. A numerical example, chaotic Lorentz system, is demonstrated to visualize the feasibility of the proposed methodology.

Improvement of the Transient Response by Partially Compensating Initial Values of Digital Controllers (디지털 제어기의 부분적 초기값 보상을 통한 천이 응답 특성 향상)

  • Doh, Tae-Yong;Ryoo, Jung Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.285-289
    • /
    • 2013
  • In switching from the track-seeking or track-jumping control mode to track-following control mode in hard disk drives or optical disk drives, initial values of the feedback controller are tuned to improve the transient response. In general, all the initial values of the controller have been compensated for this purpose. In this paper, by partially compensating initial values of digital controllers, we achieve a good performance of the transient response. In the proposed method for IVC (Intial Value Compensation), LMIs (Linear Matrix Inequalities) are used, which includes conditions for improving the performance of the transient response such as reducing a tracking error and control efforts. We obtain optimal initial values of the controller by solving an optimization problem with constraints represented by only one LMI. Although initial values of the controller are partially compensated, we can show that not only a sufficient performance of the transient response is obtained but also control efforts are diminished. The feasibility of the method is verified by simulation studies.

Digital Fuzzy Control of Nonlinear Systems Using Intelligent Digital Redesign

  • Lee, Ho-jae;Kim, Hag-bae;Park, Jin-bae;Cha, Dae-bum;Joo, Young-hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.621-627
    • /
    • 2001
  • In this paper, a novel and efficient global intelligent digital redesign technique for a Takagi-Sugeno (TS) fuzzy system is addressed. The proposed method should be notably discriminated from the previous works in that in allows us to globally match the states of the closed-loop TS fuzzy system with the pre-designed continuous-time fuzzy-model-based controller and those with the digitally redesigned fuzzy-model-based controller, and further to guarantee the stabilizability by the redesigned controller in the sense of Lyapunov. Sufficient conditions for the global state-matching and the stability of the digitally controller system are formulated in terns of linear matrix inequalities (LMIs). The Duffing-like chaotic oscillator is simulated and demonstrated, to validate the effectiveness of the proposed digital redesign technique, which implies the safe applicability to the digital control system.

  • PDF

ROBUST MIXED $H_2/H_{\infty}$ GUARANTEED COST CONTROL OF UNCERTAIN STOCHASTIC NEUTRAL SYSTEMS

  • Mao, Weihua;Deng, Feiqi;Wan, Anhua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.699-717
    • /
    • 2012
  • In this paper, we deal with the robust mixed $H_2/H_{\infty}$ guaranteed-cost control problem involving uncertain neutral stochastic distributed delay systems. More precisely, the aim of this problem is to design a robust mixed $H_2/H_{\infty}$ guaranteed-cost controller such that the close-loop system is stochastic mean-square exponentially stable, and an $H_2$ performance measure upper bound is guaranteed, for a prescribed $H_{\infty}$ attenuation level ${\gamma}$. Therefore, the fast convergence can be fulfilled and the proposed controller is more appealing in engineering practice. Based on the Lyapunov-Krasovskii functional theory, new delay-dependent sufficient criteria are proposed to guarantee the existence of a desired robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which are derived in terms of linear matrix inequalities(LMIs). Furthermore, the design problem of the optimal robust mixed $H_2/H_{\infty}$ guaranteed cost controller, which minimized an $H_2$ performance measure upper bound, is transformed into a convex optimization problem with LMIs constraints. Finally, two simulation examples illustrate the design procedure and verify the expected control performance.

Sampled-Data Controller Design for Nonlinear Systems Including Singular Perturbation in Takagi-Sugeno Form (특이섭동을 포함한 타카기 - 수게노 형태의 비선형 시스템을 위한 새로운 샘플치 제어기의 설계기법 제안)

  • Moon, Ji Hyun;Lee, Jaejun;Lee, Ho Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2016
  • This paper discusses a sampled-data controller design problem for nonlinear systems including singular perturbation. The concerned system is assumed to be modeled in Takagi--Sugeno (T--S) form. By introducing a novel Lyapunov function and an identity equation, the stability of the sampled-data closed-loop dynamics of the singularly perturbed T--S fuzzy system is analyzed. The design condition is represented in terms of linear matrix inequalities. A few discussions on the development are made that propose future research topics. Numerical simulation shows the effectiveness of the proposed method.