• Title/Summary/Keyword: Linear Observer

Search Result 359, Processing Time 0.023 seconds

PRACTICAL OBSERVER FOR IMPULSIVE SYSTEMS

  • Ellouze, Imen
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.99-111
    • /
    • 2014
  • In this paper, we deal with the problem of practical observer design and the practical stabilization for a class of perturbed impulsive systems. We show that, under the classical conditions of uniform complete controllability and uniform complete observability of the nominal system without impulsive effects, it is possible to design an observer controller for a class of perturbed linear impulsive system when the origin is not an equilibrium point.

An LMI Approach for Designing Sliding Mode Observers (슬라이딩 모드 관측기 설계를 위한 선형행렬부등식 접근법)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain systems. Using LIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. We also consider sliding mode observer design problems under an α-stability constraint or an LQ performance bound constraint. Finally, we give a numerical design example.

Extended State Estimation Method Using Linear Reduced-Order Dynamic Observers (선형 축소차수 동적 관측자를 사용한 확장된 상태 추정 방법)

  • Park, Jong-Gu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.487-493
    • /
    • 2001
  • In this paper, a new reduced-order dynamic observer method is presented. Two types of observers are pronounced, namely, the model based reduced-order dynamic observer and the Luenburger type reduced-order dynamic observer. Useful design algorithms are also provided for each structure. The essential features of the proposed observed design methods are addressed to be qualified ad effective observers. The proposed method clarifies the duality between the controller and observer designs.

  • PDF

The Implementation of State Observer for Position Control of Electrohydraulic Servo Systema (유압서보 시스템의 위치제어를 위한 관측제어기의 실현화 연구)

  • 이동권;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.673-677
    • /
    • 1986
  • This paper deals with the state observer-controller which observes unmeasurable state variables of the system and then uses the estimated values as feedback signals. The linearized model is deduced from the nonlinear electrohydraulic servo system. The 4th order analog linear observer-controller and the 2nd order digital one are modelled and implemented using OP amplifiers and IBM PC/XT, respectively. The two observer are experimentally used in the control of an electrohydraulic system. The results are satisfactory in estimation performance and in tracking performance to command signal.

  • PDF

An LMI-Based Sliding Mode Observer Design Method for Uncertain Time-Delay Systems (불확실한 시간 지연 시스템을 위한 LMI 기반 슬라이딩 모드 관측기 설계법)

  • Choi Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1018-1021
    • /
    • 2006
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain time-delay systems. Using LMIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. Finally, we give a simple LMI-based design algorithm, togeter with a numerical design example.

Reduced Order Observer Based Sliding Mode Control (축차관측기를 사용한 슬라이딩 모드 제어)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1057-1060
    • /
    • 2006
  • This paper presents an LMI-based method to design a reduced order observer based sliding mode controller for a class of uncertain systems. Using LMIs we derive an existence condition of a reduced order observer and a sliding mode control law. And we give explicit formulas of the gain matrices. Finally, we give a numerical design example, together with a design algorithm.

A Robust Control Scheme of Linear Induction Machine for Automatic Picking System Using Mass Estimation and Disturbance Force Observer (질량추정과 외란추력 관측기를 이용한 자동피킹 시스템 구동용 선형 유도모터의 강인제어 기법)

  • Choi, Jung-Hyun;Yoo, Dong-Sang;Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.62-72
    • /
    • 2013
  • To operate an automatic picking system in distribution center with high precision and high dynamics, this paper presents a robust control scheme of a linear induction motor (LIM) using the mass estimation and disturbance force observer. The force disturbance which gives a direct influence on the control performance of LIM is estimated in real-time through the disturbance observer and compensated by a feedforward manner. To get a satisfactory performance even under the mass variation by reducing the disturbance force due to the mismatched mass during the speed transient such as the acceleration and deceleration periods, a mass estimation algorithm is proposed. A Simulink model for LIM is developed and the validity of the proposed scheme is verified through the comparative simulation studies using Matlab - Simulink.

A Study on The Actual Application of the Least Order Load Observer and Effective Online Inertia Identification Algorithm for High Performance Linear Motor Positioning System (고성능 선형전동기 위치제어 시스템에 대한 최소차원 부하관측기의 실제적 구현 및 이를 이용한 실시간 관성추정기의 구현)

  • Kim, Joohn-Sheok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.4
    • /
    • pp.730-738
    • /
    • 2007
  • As well known when the linear machine is operated between two points repeatedly under positioning control, there are various positioning error at the moment of zero speed owing to the non-linear disturbance like as unpredictable friction force. To remove this positioning error, a simple least order disturbance observer is introduced and is actually implemented in this study. Due to this simple algorithm the over-all machine system can be modified to simple arbitrary given one-mass load without any disturbance. So, the total construction process for positioning control system is much easier than old one. Moreover, to generate a proper effective position profile with the limited actual machine force, a very powerful on-line mass identification algorithm using the load force estimator is presented. In the proposed mass identification algorithm, the exact load mass can be calculated during only one moving stage under a normally generated position profile. All presented algorithm is verified with experimental result with commercial linear servo machine system.

Sampled-data Fuzzy Observer Design for an Attitude and Heading Reference System and Its Experimental Validation

  • Kim, Han Sol;Park, Jin Bae;Joo, Young Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2399-2410
    • /
    • 2017
  • In this paper, a linear matrix inequality-based sampled-data fuzzy observer design method is proposed based on the exact discretization approach. In the proposed design technique, a numerically relaxed observer design condition is obtained by using the discrete-time fuzzy Lyapunov function. Unlike the existing studies, the designed observer is robust to the uncertain premise variable because the fuzzy observer is designed under the imperfect premise matching condition, in which the membership functions of the system and observer are mismatched. In addition, we apply the proposed method to the state estimation problem of the attitude and heading reference system (AHRS). To do this, we derive a Takagi-Sugeno fuzzy model for the AHRS system, and validate the proposed method through the hardware experiment.

A new scheme for discrete implicit adaptive observer and controller (이산형 적응관측자 및 제어기의 새로운 구성)

  • 고명삼;허욱열
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.822-831
    • /
    • 1981
  • Many different schemes of the adaptive observer and controller have been developed for both continuous and discrete systems. In this paper we have presented a new scheme of the reduced order adaptive observer for the single input discrete linear time invariant plant. The output equation of the plant, is transformed into the bilinear form in terms of system parameters and the states of the state variable filters. Using the plant output equation the discrete implicit adaptive observer based on the similar philosophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based on the exponentially weighted least square method. The adaptive model following control system is also constructed according to the proposed observer scheme. The proposed observer and controller are rather than simple structure and have a fast adaptive algorithm, so it may be expected that the scheme is suitable to the practical application of control system design. The effectiveness of the algorithm and structure is illustrated by the computer simulation of a third order system. The simulation results show that the convergence speed is proportinal to the increasing of weighting factor alpha, and that the full order and reduced order observer have similar convergence characteristics.

  • PDF