• Title/Summary/Keyword: Linear Constraint System

Search Result 152, Processing Time 0.024 seconds

Optimal Var allocation in System planning by Stochastic Linear Programming(II) (확률선형 계획법에 의한 최적 Var 배분 계뵉에 관한 연구(II))

  • Song, Kil-Yeong;Lee, Hee-Yoeng
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.191-193
    • /
    • 1989
  • This paper presents a optimal Var allocation algorithm for minimizing power loss and improving voltage profile in a given system. In this paper, nodal input data is considered as Gaussian distribution with their mean value and their variance. A stochastic Linear Programming technique based on chance constrained method is applied to solve the probabilistic constraint. The test result in IEEE-14 Bus model system showes that the voltage distribution of load buses is improved and the power loss is more reduced than before Var allocation.

  • PDF

Optimal Var Allocation in system planning by stochastic Linear Programming (확률 선형 계획법에 의한 최적 Var 배분 계획에 관한 연구)

  • Song, Kil-Yeong;Lee, Hee-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.863-865
    • /
    • 1988
  • This paper presents a optimal Var allocation algorithm for minimizing transmission line losses and improving voltage profile in a given system. In this paper, nodal input data is considered as Gaussian distribution with their mean value and their variance. A Stocastic Linear programming technique based on chance constrained method is applied, to solve the var allocation problem with probabilistic constraint. The test result in 6-Bus Model system showes that the voltage distribution of load buses is improved and the power loss is more reduced than before var allocation.

  • PDF

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

An LMI Approach for Designing Sliding Mode Observers (슬라이딩 모드 관측기 설계를 위한 선형행렬부등식 접근법)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain systems. Using LIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. We also consider sliding mode observer design problems under an α-stability constraint or an LQ performance bound constraint. Finally, we give a numerical design example.

Mover position detection for Hydrogen Fueled linear generator (수소연소 선형 발전기의 이동자 위치 검출)

  • Kim, Shin-Ah;Jeong, Seung-Gi
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.279-280
    • /
    • 2011
  • In order to convert the mechanical movement of a linear generator to electrical power, the amateur current of the generator is controlled in accordance to the mover position. A linear encoder, usually used for direct detection of the mover position, not only is vulnerable to mechanical vibration, but also imposes significant constraint on the mechanical design of the generator system. Thus, this study proposes a method for indirect estimation of the mover position with emfs induced in amateur coils. The estimation algorithm is validated with simulation study.

  • PDF

Optimal Control of a Coarse/Fine Position Control System with Constraints (제한조건물 고려한 조미동 위치제어 시스템의 최적제어)

  • 주완규;최기상;최기흥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.344-344
    • /
    • 2000
  • Recently, the demand for high precision and large stroke in linear positioning systems is increasing in industry. A coarse-fine position control system composed of a linear motor and a piezoelectric actuator has such characteristics. Many optimal control laws have been applied to the position control of coarse-fine actuators but most of them did not take account into constraints. In this study, model predictive control (MPC) method with constraints is applied to the position control of the coarse-fine actuator and the performance of MPC is compared with those of conventional control laws.

  • PDF

Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors

  • Kim, Jong-Sung;Seo, Jun-Min;Kang, Ju-Yeon;Jang, Youn-Young;Lee, Yun-Joo;Kim, Kyu-Wan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1726-1746
    • /
    • 2022
  • This paper presents fracture mechanics analysis results for various cracks located at pressurized water reactor pressure vessel nozzle crotch corners taking into consideration constraint effect. Technical documents such as the ASME B&PV Code, Sec.XI were reviewed and then a fracture mechanics analysis procedure was proposed for structural integrity assessment of various nozzle crotch corner cracks under normal operation conditions considering the constraint effect. Linear elastic fracture mechanics analysis was performed by conducting finite element analysis with the proposed analysis procedure. Based on the evaluation results, elastic-plastic fracture mechanics analysis taking into account the constraint effect was performed only for the axial surface crack of the reactor pressure vessel outlet nozzle with cladding. The fracture mechanics analysis result shows that only the axial surface crack in the reactor pressure vessel outlet nozzle has the stress intensity factor exceeding the low bound of upper-shelf fracture toughness irrespectively of considering the constraint effect. It is confirmed that the J-integral for the axial crack of the outlet nozzle does not exceed the ductile crack initiation toughness. Hence, it can be ensured that the structural integrity of all the cracks is maintained during the normal operation.

An Analytical Effects of Maximum Quantity Constraint on the Nash Solution in the Uniform Price Auction (발전기 최대용량 제약이 현물시장의 내쉬균형에 미치는 영향에 대한 해석적 분석)

  • 김진호;박종배;박종근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.340-346
    • /
    • 2003
  • This paper presents a game theory application for an analysis of uniform price auction in a simplified competitive electricity market and analyzes the properties of Nash equilibrium for various conditions. We have assumed that each generation firm submits his bid to a market in the form of a sealed bid and the market is operated as a uniform price auction. Two firms are supposed to be the players of the market, and we consider the maximum generation quantity constraint of one firm only. The system demand is assumed to have a linear relationship with market clearing prices and the bidding curve of each firm, representing the price at which he has a willingness to sell his generation quantity, is also assumed to have a linear function. In this paper, we analyze the effects of maximum generation quantity constraints on the Nash equilibrium of the uniform price auction. A simple numerical example with two generation firms is demonstrated to show the basic idea of the proposed methodology.

Design of Repetitive Control System for Linear Systems with Time-Varying Uncertainties (시변 불확실성을 가지는 선형 시스템을 위한 반복 제어 시스템의 설계)

  • Chung Myung Jin;Doh Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2005
  • This paper considers a design problem of the repetitive control system for linear systems with time-varying norm bounded uncertainties. Using the Lyapunov functional for time-delay systems, a sufficient condition ensuring robust stability of the repetitive control system is derived in terms of an algebraic Riccati inequality (ARI) or a linear matrix inequality (LMI). Based on the derived condition, we show that the repetitive controller design problem can be reformulated as an optimization problem with an LMI constraint on the free parameter.

Data-based Control for Linear Time-invariant Discrete-time Systems

  • Park, U. S.;Ikeda, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1993-1998
    • /
    • 2004
  • This paper proposes a new framework for control system design, called the data-based control approach or data space approach, in which the input and output data of a dynamical system is directly and solely used to analyze or design a control system without the employment of any mathematical models like transfer functions, state space equations, and kernel representations. Since, in this approach, most of the analysis and design processes are carried out in the domain of the data space, we introduce some notions of geometrical objects, e.g., the openloop and closed-loop data spaces, which serve as the system representations in the data space. In addition, we establish a relationship between the open-loop and closed-loop data spaces that the closed-loop data space is contained in the open-loop data space as one of its subspaces. By using this relationship, we can derive the data-based stabilization condition for a linear time-invariant discrete-time system, which leads to a linear matrix inequality with a rank constraint.

  • PDF