• Title/Summary/Keyword: Linear Circuit Analysis

Search Result 278, Processing Time 0.033 seconds

An Effective Pedagogical Method for Nodal Analysis in Linear Circuit (선형회로에서 마디해석법의 효과적인 교수법)

  • Kim, Gwang Won;Hyun, Seung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.76-81
    • /
    • 2013
  • This paper presents an effective pedagogical method for nodal analysis in linear circuit. In the proposed method, basic equations are built only for passive elements and independent current sources. And then, the basic equations are modified by considering other sources such as voltage sources and dependent current sources. In the proposed method, the equations are presented in form of a matrix and a vector of which elements are built systematically by considering every element in a circuit one by one. This make the proposed method easy to apply to intricately composed circuit and easy to solve the final simultaneous equations and easy to realize as computer program for nodal analysis and easy to memorize compared to the conventional method.

Analysis of electric circuit using capacitor for driving linear compressor (콘덴서를 이용한 선형압축기 구동 전기회로 해석)

  • Ko, Jun-Seok;Kim, Hyo-Bong;Park, Seong-Je;Hong, Yong-Ju;Yeom, Han-Kil;Koh, Deuk-Yong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.43-47
    • /
    • 2012
  • A linear compressor generates pulsating pressure and oscillating flow in a cryocooler such as Stirling cryocooler and pulse tube refrigerator. It is driven by AC power source and designed to operate at resonance of piston motion. The driving voltage level is determined by electric parameters of resistance, inductance and thrust constant of linear motor. From voltage equation on linear motor, the power factor of driving power is inherently less than 1. The phase difference between voltage and current of supplied power can be zero using capacitor and this can minimize a supply voltage level. Especially, the linear compressor of kW class requires high voltage and thus can cause a difficulty in selecting power supply unit due to limitation of voltage level. The capacitor in driving electric circuit is useful to settle this problem. In this study, the electric circuit of linear compressor is analytically investigated with assumption of mechanical resonance. The electric parameters of commercial linear motor are used in the analysis. The effects of capacitor on driving voltage level and power factor are investigated. From analytic results, it is shown that the voltage level can be mimized with using capacitor in driving electric circuit.

Design and Analysis of A Mini Linear Optical Pickup Actuator

  • Park, Joon-Hyuk;Baek, Yoon-Su;Park, Young-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1616-1627
    • /
    • 2003
  • This paper describes a mini linear optical pickup actuator. To reduce the size, inner yokes are designed to guide the mover and outer yokes of permanent magnets are removed. Magnetic circuit method is used to determine the thrust force. Virtual path method is proposed to analyze the open magnetic circuit analysis. The magnetic circuit of the proposed actuator can be a closed circuit due to the virtual path model of the outer magnetic flux. The validity of virtual path method is evaluated by comparing to the FEM analysis. Structural vibration is investigated using FEM and the design of the mover is modified to improve the vibration characteristic. Dynamic characteristic experiments shows that the performance of the proposed actuator is enough to be used as a coarse and fine seeking actuator simultaneously and the thrust force margin for loading a focusing actuator is guaranteed.

Analysis on Dynamic Characteristic and Circuit Parameter of Linear Switched Reluctance Motor by Electromagnetic Analytical Method (전자기 해석법에 의한 직선형 스위치드 릴럭턴스 전동기의 회로정수 도출 및 동특성 해석)

  • Park, Ji-Hoon;Ko, Kyoung-Jin;Choi, Jang-Young;Jang, Seok-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.318-327
    • /
    • 2010
  • This paper deals with analysis on dynamic characteristic and circuit parameter of linear switched reluctance motor by electromagnetic analytical method. Above all, using space harmonic method, which is electromagnetic method, the air-gap flux density is analyzed in the both align and unaign positions, and the inductance profile, force characteristic and resistance per phase are calculated by means of the process. The validity of the analyzed results are demonstrated by the finite element method(FEM) and manufacture of the prototype machine. Second, the dynamic simulation is analyzed by the use of circuit parameters derived from analytical method, and the operating system of the prototype machine is manufactured to demonstrated the validity of simulation analysis. As a result, it is considered that the characteristic equation suggested in this paper will contribute to the design, analysis and application of LSRM.

Analysis of Ultrasonic Linear Motor Using the Finite Element Method and Equivalent Circuit

  • Park, Jong-Seok;Joo, Hyun-Woo;Lee, Chang-Hwan;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.4
    • /
    • pp.159-164
    • /
    • 2003
  • In this paper, a three-dimensional finite element method and construction of equivalent-circuit for a linear ultrasonic motor are presented. The validity of three-dimensional finite element routine in this paper is experimentally confirmed by analyzing impedance of a piezoelectric transducer. Using this confirmed finite element routine, impedance and vibration mode of a linear ultrasonic motor are calculated. Elliptical motion of contact point between vibrator and rail of the linear ultrasonic motor is shown for determination of contact points. By using the finite element method and analytic equations, characteristics of the linear ultrasonic motor, such as thrust force, speed, losses, powers and efficiency, are calculated. The results are confirmed by experiment. Finally, equivalent circuit parameters of the linear ultrasonic motor are obtained using the three-dimensional finite element method and analytic equations.

Design of Linear Transverse Flux Machine for Stelzer Machine using Equivalent Magnet Circuit and FEM

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1596-1603
    • /
    • 2018
  • This paper presents the new design and validation process of the linear transverse flux machine of the stelzer machine for hybrid vehicle application. A linear transverse flux machine is a novel electric machine that has higher force density and power than conventional electric machine. The process concentrates on 2-dimensional and 3-dimensional analysis using equivalent magnetic circuit method considering leakage elements and it is verified by finite element analysis. Besides the force characteristics of all axis of each direction are analyzed. The study is considered by dividing the transverse flux electric excited type and the transverse flux permanent magnet excited type. Additionally three-dimensional analysis in this machine is accomplished due to asymmetric structure with another three axes. Finally, it suggests the new design and validation process of linear transverse flux machine for stelzer machine.

Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation (동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Park, Yu-Seop;Kim, Jin-Soon;Choi, Ji-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

Numerical analysis on the critical current evaluation and the correction of no-insulation HTS coil

  • Bonghyun Cho;Jiho Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.16-20
    • /
    • 2023
  • The International Electrotechnical Commission (IEC) 61788-26:2020 provides guidelines for measuring the critical current of Rare-earth barium copper oxide (REBCO) tapes using two methods: linear ramp and step-hold methods. The critical current measurement criterion, 1 or 0.1 μV/cm of electric field from IEC 61788-26 has been normally applied to REBCO coils or magnets. No-insulation (NI) winding technique has many advantages in aspects of electrical and thermal stability and mechanical integrity. However, the leak current from the NI REBCO coil can cause distortion in critical current measurement due to the characteristic resistance which causes the radial current flow paths. In this paper, we simulated the NI REBCO coil by applying both linear ramp and step-hold methods based on a simplified equivalent circuit model. Using the circuit analysis, we analyzed and evaluated both methods. By using the equivalent circuit model, we can evaluate the critical current of the NI REBCO coil, resulting in an estimation error within 0.1%. We also evaluate the accuracy of critical current measurement using both the linear ramp and step-hold methods. The accuracy of the linear ramp method is influenced by the inductive voltage, whereas the accuracy of the step-hold method depends on the duration of the hold-time. An adequate hold time, typically 5 to 10 times the time constant (τ), makes the step-hold method more accurate than the linear ramp method.

Calculation of Force Density in Linear Motor Using Equivalent Magnetic Circuit (등가자기회로를 이용한 리니어모터의 추력밀도계산)

  • Hong, Jung-Pyo;Kang, Do-Hyun;Joo, Soo-Won;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.96-98
    • /
    • 2001
  • In this paper, the equivalent magnetic circuit and FEM are used to calculate force density of linear BLDC motor. The equivalent magnetic circuit is hard to exact compose for analysis model and it is just applied to linear system. To flexible design and reducing the calculated and analyzed time, magnetic circuit has to be used for designing the linear BLDC motor and deducing equation of force density. Force density as parameter of permanent magnet and coil-side width that are important to determined force density can be estimated using equation of force density. FEM is used to prove reliability of equation of force density and to consider the nonlinear system. Equivalent magnetic circuit and result of FEM are similar, but it is little different by friction loss at the experiment.

  • PDF

3D Finite Element Analysis of Contact-less Power Supply with Linear Servo Motor

  • Woo, Kyung-Il;Park, Han-Seok;Park, Hyeong-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.190-196
    • /
    • 2007
  • This paper presents the 3D finite element analysis of the Contact-less Power Supply(CPS) with linear servo motor. The primary, secondary self and leakage inductances of the contact-less power supply and the capacitances of a resonant circuit are calculated by the finite element analysis using current source. The voltage source is used to do accurate analysis of the characteristics of the contact-less power supply. The CPS with the linear servo motor is proposed. The characteristics analysis of the contact-less power supply considering the linear servo motor is done.