• Title/Summary/Keyword: Limit of Detection

Search Result 2,421, Processing Time 0.035 seconds

Analytical Method Development and Monitoring of Residual Solvents in Dietary Supplements (건강기능식품 중 잔류용매 분석법 개발 및 모니터링)

  • Lee, Hwa-Mi;Shin, Ji-Eun;Jang, Young-Mi;Kim, Hee-Yun;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.390-397
    • /
    • 2010
  • Residual solvents in foods are defined as organic volatile chemicals used or produced in manufacturing of extracts or additives, or functional foods. The solvents are not completely eliminated by practical manufacturing techniques and they also may become contaminated by solvents from packing, transportation or storage in warehouses. Because residual solvents have no nutritional value but may be hazardous to human health, there is a need to remove them from the final products or reduce their amounts to below acceptable levels. The purpose of this study was to develop and evaluate an analytical method for the screening of residual solvents in health functional foods. Furthermore, the aim of this study was to constitute a reasonable management system based on the current state of the market and case studies of foreign countries. Eleven volatile solvents such as MeOH, EtOH, trichloroethylene and hexane were separated depending on their column properties, temp. and time using Gas Chromatography (GC). After determining the GC conditions, a sample preparation method using HSS (Head Space Sampling) was developed. From the results, a method for analyzing residual solvents in health functional foods was developed considering matrix effect and interference from the sample obtained from the solution of solvents-free health functional foods spiked with 11 standards solutions. Validation test using the developed GC/HSS/MS (Mass Spectrometry) method was followed by tests for precision, accuracy, recovery, linearity and adequate sensitivity. Finally, examination of 104 samples grouped in suits was performed by the developed HSS/GC/MS for screening the solvents. The 11 solvents were isolated from health functional foods based on vapor pressure difference, and followed by separation within 15 minutes in a single run. The limt of detection (LOD), limit of quantification (LOQ), recovery and coefficient of variation (C.V.) of these compounds determined by the HSS/GC/MS were found to be 0.1 pg/mL, 0.1-125 pg/g, 51.0-104.6%, and less than 15%, respectively. Using the developed HSS/GC/MS method, residual solvent from 16 out of 104 health functional products were detected as a EtOH. This method therefore seems t o be a valuable extension ofanalytical method for the identification of residual solvents in health functional food.

Contents of Heavy Metals (Hg, Pb, Cd, Cu) and Risk Assessment in Commercial Cephalopods (유통 두족류의 중금속(Hg, Pb, Cd, Cu) 함량과 위해성 평가)

  • Kim, Su-Un;Hwang, Young-Ok;Park, Ae-Sook;Park, Young-Ae;Ham, Hee-Jin;Choi, Sung-Min;Kim, Jung-Hun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.4
    • /
    • pp.606-612
    • /
    • 2011
  • The purpose of this study was to investigate certain heavy metals (Hg, Pb, Cd, Cu) in 144 samples of cephalopods, to identify weekly heavy metal intakes and to evaluate potential health risks. The average concentrations in the arm, expressed in mg/kg, were: Hg 0.017 (less than the limit of detection (LOD) to 0.059), Pb 0.024 (less than the LOD to 0.092), Cd 0.030 (less than the LOD to 0.627) and Cu 2.536 (less than the LOD to 5.837). The average concentration in the internal organs, expressed in mg/kg, were: Hg 0.063 (from 0.008 to 0.543), Pb 0.579 (less than the LOD to 2.344), Cd 15.200 (from 0.654 to 75.29) and Cu 201.706 (from 2.412 to 856.4). Heavy metal concentrations were higher in the organs than in the arm. Of the four heavy metals, the ratio of internal organs to arm was highest for cadmium. The weekly intakes of Hg, Pb, Cd and Cu from Octopus minor were 0.2%, 0.08%, 0.20% and 0.00%, respectively from the arm, and 1.0%, 0.96%, 92.28% and 0.05% from the internal organs as compared to PTWI (provisional tolerable weekly intakes) established by the FAO/WHO Expert Committee for Food Safety Evaluation.

Validation of Method Determining Marmesin in Broussonetia kazinoki Extract (닥나무 추출물의 Marmesin 성분 분석법 검증)

  • Kwon, Jin Gwan;Seo, Changon;Hong, Seong Su;Seo, Dong-Wan;Oh, Joa Sub;Kim, Jin Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1604-1609
    • /
    • 2016
  • An HPLC analysis method was developed for standard determination of marmesin as a functional health material in Broussonetia kazinoki extract. HPLC was performed on a $C_{18}$ Kromasil column ($4.6{\times}250mm$, $5{\mu}m$) with a gradient elution of 0.1% (v/v) trifluoroacetic acid and acetonitrile at a flow rate of 1.0 mL/min at $30^{\circ}C$. The analyte was detected at 330 nm. The HPLC method was validated in accordance with International Conference on Harmonization guidelines for analytical procedures with respect to specificity, precision, accuracy, and linearity. The limit of detection and quantitation were 6.2 and $18.6{\mu}g/mL$, respectively. Calibration curves showed good linearity ($r^2$>0.9999), and the precision of analysis was satisfactory (less than 0.3%). Recoveries of quantified compound ranged from 100.35 to 101.18%. This result indicates that the established HPLC method is very useful for the determination of marker compounds in B. kazinoki extracts.

Synergistic Solvent Extraction of Manganese(II) by using Cupferron and Tetrabutylammonium ion (Cupferron과 Tetrabutylammonium ion을 이용한 Mn(II)의 상승용매 추출에 관한 연구)

  • In, Gyo;So, Jin-Hwan;Choi, Jong-Moon;Kim, Young-Sang
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • The synergistic solvent extraction of Mn(II) by N-nitroso-N-phenylhydroxylamineammonium salt (cupferron) and tetrabutylammonium ion ($TBA^+$) has been studied. In the presence of $TBA^+$, over 95% Mn(II) was extracted from an aqueous solution into chloroform by the cupferron in the pH range of 4 to 10. But a part of Mn(II) was extracted with only cupferron. The ternary complex of Mn(II) was more efficiently extracted into $CH_2Cl_2$ and $CHCl_3$ than other nonpolar solvents. The extracted Mn(II) was determined in the back-extracted $HNO_3$ solution by GF-AAS. This fixed procedure was applied to the determination of trace Mn(II) in tap water samples of pH 5.0. The detection limit equivalent to 3 times standard deviation of the background absorption was 0.37 ng/mL and Mn(II) was determined with the range of 0.4 to 1.01 ng/mL in our laboratory's tap water. And the recovery was 94 to 107% in samples in which 2.0 ng/mL Mn(II) was spiked. The interferences of common concomitant elements such as Cu(II), Ca(II), Fe(III) and so on were not shown up to $10{\sim}20{\mu}g/mL$. From these results, this procedure could be concluded to be applied for the determination of trace Mn(II) in other environmental water samples.

Determination of Carbendazim in Commercial Agricultural Products by LC-MS/MS (LC-MS/MS를 이용한 농산물 중 카벤다짐 분석)

  • Hwang, Lae-Hwong;Lee, Sung-Deuk;Kim, Jeong-Gon;Kim, Ji-Young;Park, So-Hyun;Kim, Ji-Hae;Park, Jung-Hyun;Han, Chang-Ho;Kim, Mu-Sang
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • A rapid and precise method using LC-MS/MS was developed for carbendazim analysis in agricultural products. This compound was extracted with acetonitrile from agricultural products and cleaned up by solid-phase extraction procedure. The limit of detection and quantification were 0.001 mg/kg and 0.004 mg/kg, respectively. The mean recoveries and precision from 4 agricultural products, soybean sprout and mungbean sprout were in the range of 83.3-86.4% and 0.2-3.0% spiked at 1.0 mg/kg and those were in the range of 77.3-90.1% and 1.3-3.8% spiked at 0.02 mg/kg. The present method is faster and more precise compared with the multi-residue method of Korean Food Code. Therefore, we conclude that this method is suitable for carbendazim determination in a wide range of agricultural products.

Formaldehyde Monitoring of Hygiene Products in Domestic Market (국내 유통 위생용품 중 포름알데히드 잔류량 모니터링)

  • Na, Young-Ran;Kwon, Hyeon-Jeong;Cho, Hyun-Nho;Kim, Hyeon-Jin;Park, Yon-Koung;Park, Sung-Ah;Lee, Seong-Ju;Kang, Jung-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.225-233
    • /
    • 2020
  • By the standards and specifications for hygiene products, three test methods for formaldehyde are specified for each item type of hygiene product. After derivatization using acetylacetone and 2,4-dinitrophenylhydrazine (2,4-DNPH), formaldehyde is analyzed by spectrophotometer and high-performance liquid chromatography (HPLC). Validation of the three test methods was performed on tissue, diaper lining and waterproof layer, and panty liner products. The results of linearity (R2), limit of detection (LOD), limit of quantification (LOQ), recovery rate (%) and reproducibility (%), showed that all three methods are suitable for analyzing formaldehyde in hygiene products. After derivatization with 2,4-DNPH and cetylacetone, formaldehyde was analyzed at 0, 3, 6, 9, 24 and 48 hours by HPLC. Formaldehyde derivatized with 2,4-DNPH showed no statistically significant change in formaldehyde peak area over time (P>0.05). But, acetylacetone-derivatizated formaldehyde showed a negative correlation coefficient (r) over time (P<0.01). We investigated the residual amounts of formaldehyde in 205 hygiene products distributed in Busan. Among 74 disposable diaper products tested, 73 had low concentrations of formaldehyde (0.13-29.87 mg/kg). Moreover, formaldehyde was not detected in any of 78 tissue, 27 disposable paper towel, 12 disposable dishcloth, 7 paper cup, one brand of paper straw and 6 disposable napkin products.

Risk Assessment Aluminum Levels of Circulating Agricultural Products in Korea (국내 다소비 농산물의 알루미늄 농도 모니터링 및 농산물 섭취로 인한 위해도 평가)

  • An, Jae-Min;Hong, Kyong-Suk;Kim, Sung-Youn;Kim, Ji-Hye;Yu, Kyong-Eun;Kim, Hyo-Young;Park, Hyoung-Dal;Lee, Jae-Hwon;Kim, Dong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.336-344
    • /
    • 2015
  • BACKGROUND: This study was carried out to collect occurrence data on aluminum in 12 type agricultural products and assess dietary exposure risk to the Korean population health for aluminum concentration in agricultural products.METHODS AND RESULTS: Aluminum analysis samples were performed using microwave device and Inductively Coupled Plasma Optical Emission Spectrometer. The LOD(Limit of Detection) for aluminum was 0.851 μg/kg, while the LOQ(Limit of Quantitation) was 2.838 μg/kg and recovery was 97.6% for aluminum. The average levels of aluminum in mg/kg were 0.526 for rice, 0.546 for Korean cabbage, 1.316 for corn, 6.207 for soybean, 0.549 for sweet potato, 0.257 for potato, 6.963 for spinach, 1.213 for carrot, 0.524 for garlic, 0.950 for radish, 1.015 for leek, and 3.511 for Welsh onion. The dietary exposures of aluminum through usual intake were polished rice 89.31 μg/day, Korean cabbage 33.14 μg/day, corn 0.66 μg/day, soybean 3.72 μg/day, sweet potato 6.86 μg/day, potato 4.96 μg/day, spinach 45.96 μg/day, carrot 6.79 μg/day, garlic 2.36 μ g/day, radish 7.32 μg/day, leek 2.23 μg/day and Welsh onion 43.89 μg/day, taking 0.57%, 0.21%, 0.00%, 0.02%, 0.04%, 0.03%, 0.04%, 0.04%, 0.02%, 0.05%, 0.01% and 0.28% of PTWI(2 mg/kg b.w./week), respectively.CONCLUSION: The levels of overall dietary exposure to aluminum for Korean population through intake of agricultural product was far below the recommended JECFA level, indicating of least possibility of risk.

Determination of Cd(II) after Preconcentration onto Microcrystalline p-Dichlorobenzene Loaded with 2-Mercaptobenzothiazole (2-Mercaptobenzothiazole이 내포된 p-Dichlorobenzene 미세결정으로 예비농축시킨 후 Cd(II) 정량)

  • Yoon, Ju-Im;Choi, Hee-Seon
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • A sensitive technique for the determination of trace Cd(II) in various real samples after preconcentration onto microcrystalline p-dichlorobenzene loaded with 2-mercaptobenzothiazole was developed. Several experimental conditions such as the pH of the sample solution, the amount of chelating agent 2-mercaptobenzothiazole, the amount of adsorbent p-dichlorobenzene-2-MBT, and the flow rate of sample solution were optimized. The interfering effects of various concomitant ions were investigated. Cu(II) interfered with more seriously than any other ions. However, the interference by Cu(II) could be overcome sufficiently by adjusting tartrate ion concentration to be 0.01M or by controlling the amount of 2-mercaptobenzothiazole contained in 0.20 g p-dichlorobenzene to be 0.12 g. The dynamic range, the correlation coefficient ($R^2$) and the detection limit obtained by this proposed technique were $0.5{\sim}30$ ng $mL^{-1}$, 0.9962, and 0.39 ng $mL^{-1}$, respectively. Thus, good results were obtained by the use of p-dichlorobenze as adsorbent matrix. For validating this proposed technique, the aqueous samples(wastewater, stream water, and reservoir water) and the plastic sample were used. Recovery yields of $93{\sim}104$ % were obtained. By F test, these measured data were not different from ICP-MS data at 95 % confidence level. Based on the results from the experiment, it was found that this proposed technique could be applied to the preconcentration and determination of Cd(II) in various real samples.

Control of Chemical Residues in Animal Foods - Problems and their Countermesures - (동물성 식품에 대한 안전성 확보의 문제점과 대책)

  • 이문한;신광순
    • Journal of Food Hygiene and Safety
    • /
    • v.5 no.3
    • /
    • pp.139-158
    • /
    • 1990
  • Heavy resposibility is placed on the veterinarian and the livestock and aquatic animal producers to observe the period for withdrawal of a drug prior to marketing to assure that illegal concentrations of drug residues in meat, milk, egg, fish and other animal foods do not occur. This is essential from a public health standpoint because levels of residues in excess of those legalIy permitted in edible tissues may produce injurious effects when consumed over a long time span. With greater use of animal drugs of chemicals required in production of food crops, livestock and aquatic animals, the possibility of human being continuously exposed to drug and chemical residues for a life time is unequivocally evident. Korean authorities concerned Ministry of Agriculture and Fishery and Ministry of Health and Social Affairs, have recenly made their own regulations to control chemical residues in beef, pork and chicken independently. Consequently, inspection for the chemical residues also have been or will be carried out by the two authorities concerned without any cooperations. It is undoubtfulI to have a single regulation and national residue program for control residual chemicals in animal foods and that the tolerance levels should be established in milk, egg, and freshwater fish. Besides, we have no complete standard methods to analyze the residual chemicals and the methods have not been evaluated their efficiency, precise, accuracy and limit of detection. In this paper, the analytical methods and national residue programs in foreign countries are introduced and discussed and the status of animal food safety in this country is also reviewed.

  • PDF

DEHP, DEP and DBP Exposure Analysis using Urinary Metabolites of Gyonggi Province University Students

  • Lee, JangWoo;Kho, YoungLim;Kim, SungKyoon;Choi, Kyungho;Hwang, SeongHee;Jeong, Jeeyeon;Kim, Pangyi
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.408-417
    • /
    • 2013
  • Objectives: Phthalates are used as plasticizers in polyvinyl chloride (PVC) plastics. As phthalate plasticizers are not chemically bound to the PVC, they can leach, migrate or evaporate into indoor air and atmosphere, foodstuffs, other materials, etc. Therefore, humans are exposed through ingestion, inhalation, and dermal exposure over their entire lifetime, including during intrauterine development. In particular, university students have a great number of opportunities to contact products including phthalates during campus life (food packaging, body care products, cosmetic, lotions, aftershave, perfume etc.). The purpose of this study was to examine levels of phthalate exposure as undergraduate students begin to use pharmaceuticals and personal care products including phthalates. Methods: Phthalate metabolites, mono-ethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl phthalate (MiBP), mono-2- ethylhexyl phthalate (MEHP), {(mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP}, and mono-(2-ethlyl-5-oxohexyl) phthalate (MEOHP} were examined. 80 urine samples collected from university students were analyzed using LC/MS/MS(API 4000, Applied Bioscience) with on-line enrichment and columnswitching techniques. This study was carried out at Y university located in Gyonggi Province from 2008 to 2011. Results: The detection limit of phthalate metabolites were 0.03 ng/mL for MEP, 0.11 ng/mL for MnBP, 0.08 ng/mL for MiBP, 0.93 ng/mL for MEHP, 0.19 ng/mL for MEOHP and 0.16ng/mL for MEHHP. MnBP showed the highest urinary levels (median: 31.6 ug/L, 24.8 ug/g creatinine (cr)). Concentrations were also high for MEHHP (median: 24.1 ug/L, 19.0 ug/g cr), followed by MEOHP (median: 22.8 ug/L, 17.9 ug/g cr). In individual cases, the maximum level reached up to 348 ug/L, and 291 ug/g cr, respectively. The urinary and creatinine adjusted levels of MEP were lower than those for DBP and DEHP metabolites, but were higher in 95th percentiles. As a result, the mean daily DEP intake value was 2.3 ${\mu}g/kg$ bw/day, 3.5 ${\mu}g/kg$ bw/day for DEHP and 4.9 ${\mu}g/kg$ bw/day for DBP. Conclusion: These students' phthalate exposure levels were below the international safe level set by the EU, but higher than the 2012 KFDA survey of the age group from 3 to 18.