• 제목/요약/키워드: Likelihood Inference

검색결과 158건 처리시간 0.022초

The Efficiency of Conditional MLE for Pure Birth Processes

  • Yoon, Jong-Ook;Kim, Joo-Hwan
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2002년도 정기학술대회
    • /
    • pp.367-386
    • /
    • 2002
  • The Present paper is devoted to a study of the performance, in large samples, of a conditional maximum likelihood estimator(CMLE) for the parameter ${\lambda}$ in a pure birth processes(PBP). To conduct the conditional inference for the PBP, we drove the likelihood function of time-inhomogeneous Poisson processes. The limiting distributions of CMLE under the likelihoods $L_{t}$ or $\overline{L_{t}}$ are investigated. We found that the CMLE is asymptotically efficient with respect to the both $L_{t}$ or $\overline{L_{t}}$ under the efficiency criterion of Weiss & Wolfowitz(1974).

  • PDF

Bayesian Inference of the Stochastic Gompertz Growth Model for Tumor Growth

  • Paek, Jayeong;Choi, Ilsu
    • Communications for Statistical Applications and Methods
    • /
    • 제21권6호
    • /
    • pp.521-528
    • /
    • 2014
  • A stochastic Gompertz diffusion model for tumor growth is a topic of active interest as cancer is a leading cause of death in Korea. The direct maximum likelihood estimation of stochastic differential equations would be possible based on the continuous path likelihood on condition that a continuous sample path of the process is recorded over the interval. This likelihood is useful in providing a basis for the so-called continuous record or infill likelihood function and infill asymptotic. In practice, we do not have fully continuous data except a few special cases. As a result, the exact ML method is not applicable. In this paper we proposed a method of parameter estimation of stochastic Gompertz differential equation via Markov chain Monte Carlo methods that is applicable for several data structures. We compared a Markov transition data structure with a data structure that have an initial point.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • 제30권4호
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Comparative analysis of Bayesian and maximum likelihood estimators in change point problems with Poisson process

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.261-269
    • /
    • 2015
  • Nowadays the application of change point analysis has been indispensable in a wide range of areas such as quality control, finance, environmetrics, medicine, geographics, and engineering. Identification of times where process changes would help minimize the consequences that might happen afterwards. The main objective of this paper is to compare the change-point detection capabilities of Bayesian estimate and maximum likelihood estimate. We applied Bayesian and maximum likelihood techniques to formulate change points having a step change and multiple number of change points in a Poisson rate. After a signal from c-chart and Poisson cumulative sum control charts have been detected, Monte Carlo simulation has been applied to investigate the performance of Bayesian and maximum likelihood estimation. Change point detection capacities of Bayesian and maximum likelihood estimation techniques have been investigated through simulation. It has been found that the Bayesian estimates outperforms standard control charts well specially when there exists a small to medium size of step change. Moreover, it performs convincingly well in comparison with the maximum like-lihood estimator and remains good choice specially in confidence interval statistical inference.

Multiple Comparison for the One-Way ANOVA with the Power Prior

  • Bae, Re-Na;Kang, Yun-Hee;Hong, Min-Young;Kim, Seong-W.
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.13-26
    • /
    • 2008
  • Inference on the present data will be more reliable when the data arising from previous similar studies are available. The data arising from previous studies are referred as historical data. The power prior is defined by the likelihood function based on the historical data to the power $a_0$, where $0\;{\le}\;a_0\;{\le}\;1$. The power prior is a useful informative prior for Bayesian inference such as model selection and model comparison. We utilize the historical data to perform multiple comparison in the one-way ANOVA model. We demonstrate our results with some simulated datasets under a simple order restriction between the treatments.

BAYESIAN INFERENCE FOR THE POWER LAW PROCESS WITH THE POWER PRIOR

  • KIM HYUNSOO;CHOI SANGA;KIM SEONG W.
    • Journal of the Korean Statistical Society
    • /
    • 제34권4호
    • /
    • pp.331-344
    • /
    • 2005
  • Inference on current data could be more reliable if there exist similar data based on previous studies. Ibrahim and Chen (2000) utilize these data to characterize the power prior. The power prior is constructed by raising the likelihood function of the historical data to the power $a_o$, where $0\;{\le}\;a_o\;{\le}\;1$. The power prior is a useful informative prior in Bayesian inference. However, for model selection or model comparison problems, the propriety of the power prior is one of the critical issues. In this paper, we suggest two joint power priors for the power law process and show that they are proper under some conditions. We demonstrate our results with a real dataset and some simulated datasets.

Bayesian Analysis of Randomized Response Models : A Gibbs Sampling Approach

  • Oh, Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.463-482
    • /
    • 1994
  • In Bayesian analysis of randomized response models, the likelihood function does not combine tractably with typical priors for the parameters of interest, causing computational difficulties in posterior analysis of the parameters of interest. In this article, the difficulties are solved by introducing appropriate latent variables to the model and using the Gibbs sampling algorithm.

  • PDF

Further Applications of Johnson's SU-normal Distribution to Various Regression Models

  • Choi, Pilsun;Min, In-Sik
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.161-171
    • /
    • 2008
  • This study discusses Johnson's $S_U$-normal distribution capturing a wide range of non-normality in various regression models. We provide the likelihood inference using Johnson's $S_U$-normal distribution, and propose a likelihood ratio (LR) test for normality. We also apply the $S_U$-normal distribution to the binary and censored regression models. Monte Carlo simulations are used to show that the LR test using the $S_U$-normal distribution can be served as a model specification test for normal error distribution, and that the $S_U$-normal maximum likelihood (ML) estimators tend to yield more reliable marginal effect estimates in the binary and censored model when the error distributions are non-normal.

The restricted maximum likelihood estimation of a censored regression model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제24권3호
    • /
    • pp.291-301
    • /
    • 2017
  • It is well known in a small sample that the maximum likelihood (ML) approach for variance components in the general linear model yields estimates that are biased downward. The ML estimate of residual variance tends to be downwardly biased. The underestimation of residual variance, which has implications for the estimation of marginal effects and asymptotic standard error of estimates, seems to be more serious in some limited dependent variable models, as shown by some researchers. An alternative frequentist's approach may be restricted or residual maximum likelihood (REML), which accounts for the loss in degrees of freedom and gives an unbiased estimate of residual variance. In this situation, the REML estimator is derived in a censored regression model. A small sample the REML is shown to provide proper inference on regression coefficients.

Bayesian Inference for Censored Panel Regression Model

  • Lee, Seung-Chun;Choi, Byongsu
    • Communications for Statistical Applications and Methods
    • /
    • 제21권2호
    • /
    • pp.193-200
    • /
    • 2014
  • It was recognized by some researchers that the disturbance variance in a censored regression model is frequently underestimated by the maximum likelihood method. This underestimation has implications for the estimation of marginal effects and asymptotic standard errors. For instance, the actual coverage probability of the confidence interval based on a maximum likelihood estimate can be significantly smaller than the nominal confidence level; consequently, a Bayesian estimation is considered to overcome this difficulty. The behaviors of the maximum likelihood and Bayesian estimators of disturbance variance are examined in a fixed effects panel regression model with a limited dependent variable, which is known to have the incidental parameter problem. Behavior under random effect assumption is also investigated.