Image classification is one of the fundamental applications of computer vision. It enables a system to identify an object in an image. Recently, image classification applications have broadened their scope from computer applications to edge devices. The convolutional neural network (CNN) is the main class of deep learning neural networks that are widely used in computer tasks, and it delivers high accuracy. However, CNN algorithms use a large number of parameters and incur high computational costs, which hinder their implementation in edge hardware devices. To address this issue, this paper proposes a lightweight image classifier that provides good accuracy while using fewer parameters. The proposed image classifier diverts the input into three paths and utilizes different scales of receptive fields to extract more feature maps while using fewer parameters at the time of training. This results in the development of a model of small size. This model is tested on the CIFAR-10 dataset and achieves an accuracy of 90% using .26M parameters. This is better than the state-of-the-art models, and it can be implemented on edge devices.
본 논문에서는 경량화된 CNN(Convolutional Neural Network)을 사용하여 CAN(Controller Area Network) 버스 상의 공격을 탐지하는 효율적인 알고리즘을 제안하고, 이를 기반으로 하는 IDS(Intrusion Detection System)를 FPGA로 설계, 구현 및 검증하였다. 제안한 IDS는 기존의 CNN 기반 IDS에 비해 CAN 버스 상의 공격을 프레임 단위로 탐지할 수 있어서 정확하고 신속한 대응이 가능하다. 또한 제안한 IDS는 기존의 CNN 기반 IDS에 비해 컨볼루션 레이어를 하나만 사용하기 때문에 하드웨어를 크게 줄일 수 있다. 시뮬레이션 및 구현 결과는 제안된 IDS가 CAN 버스 상의 다양한 공격을 효과적으로 탐지한다는 것을 보여준다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4080-4097
/
2020
In recent years, convolutional neural network (CNN) has become the primary method for face detection. But its shortcomings are obvious, such as expensive calculation, heavy model, etc. This makes CNN difficult to use on the mobile devices which have limited computing and storage capabilities. Therefore, the design of lightweight CNN for face detection is becoming more and more important with the popularity of smartphones and mobile Internet. Based on the CPU real-time face detector FaceBoxes, we propose a multi-task lightweight face detector, which has low computing cost and higher detection precision. First, to improve the detection capability, the squeeze and excitation modules are used to extract attention between channels. Then, the textual and semantic information are extracted by shallow networks and deep networks respectively to get rich features. Finally, the landmark detection module is used to improve the detection performance for small faces and provide landmark data for face alignment. Experiments on AFW, FDDB, PASCAL, and WIDER FACE datasets show that our algorithm has achieved significant improvement in the mean average precision. Especially, on the WIDER FACE hard validation set, our algorithm outperforms the mean average precision of FaceBoxes by 7.2%. For VGA-resolution images, the running speed of our algorithm can reach 23FPS on a CPU device.
최근 다양한 분야에서 뛰어난 성능을 나타내는 Convolutional Neural Network(CNN)모델을 모바일 기기에서 사용하기 위한 다양한 연구가 진행되고 있다. 기존의 CNN 모델은 모바일 장비에서 사용하기에는 가중치의 크기가 크고 연산복잡도가 높다는 문제점이 있다. 이를 해결하기 위해 가중치의 표현 비트를 낮추는 가중치 양자화를 포함한 여러 경량화 방법들이 등장하였다. 많은 방법들이 다양한 모델에서 적은 정확도 손실과 높은 압축률을 나타냈지만, 대부분의 압축 모델들은 정확도 손실을 복구하기 위한 재학습 과정을 포함시켰다. 재학습 과정은 압축된 모델의 정확도 손실을 최소화하지만 많은 시간과 데이터를 필요로 하는 작업이다. Weight Quantization이후 각 층의 가중치는 정수형 행렬로 나타나는데 이는 이미지의 형태와 유사하다. 본 논문에서는 Weight Quantization이후 각 층의 정수 가중치 행렬을 이미지의 형태로 비디오 코덱을 사용하여 압축하는 방법을 제안한다. 제안하는 방법의 성능을 검증하기 위해 ImageNet과 Places365 데이터 셋으로 학습된 VGG16, Resnet50, Resnet18모델에 실험을 진행하였다. 그 결과 다양한 모델에서 2%이하의 정확도 손실과 높은 압축 효율을 달성했다. 또한, 재학습 과정을 제외한 압축방법인 No Fine-tuning Pruning(NFP)와 ThiNet과의 성능비교 결과 2배 이상의 압축효율이 있음을 검증했다.
Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.
Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.
엣지 디바이스에서 딥러닝을 활용하기 위하여 CNN 경량화 연구들이 진행되고 있다. 경량 CNN 은 대부분 고정 소수점을 사용하며, 계층에 따라 정밀도는 달라진다. 본 논문에서는 경량 CNN 을 지원하기 위하여, 사용 계층에 따라 정밀도를 선택할 수 있는 가변 정밀도 곱셈기를 제안한다. 제안하는 가변 정밀도 곱셈기는 낮은 정밀도 곱셈기를 병합하는 구조로, 정밀도가 낮을 때는 병렬 처리를 통해 효율을 높인다. 제안하는 곱셈기를 Verilog HDL로 설계하고 ModelSim 에서 동작을 확인하였다. 설계된 곱셈기는 계층별로 정밀도가 다른 CNN 가속기에서 효율적으로 적용될 것으로 기대된다.
본 논문에서는 배달 서비스 로봇 응용을 위한 LiDAR 센서 기반 경량화된 객체 분류 시스템을 제안한다. 3차원 포인트 클라우드 데이터를 Pillar Feature Network (PFN)을 사용하여 2차원 pseudo image로 인코딩한 후, Depthwise Separable Convolution Neural Network (DS-CNN)에 기반하여 설계된 네트워크를 통해 객체 분류를 수행하는 경량화된 시스템을 설계하였다. 구현 결과, 설계한 분류 네트워크의 파라미터 수와 Multiply-Accumulate (MAC) 연산 수는 각각 9.08K 및 3.49M이며, 94.94%의 분류 정확도를 지원 가능함을 확인하였다.
객체 검출 알고리즘은 자율주행 시스템 구현을 위한 핵심 요소이다. 최근 심층 합성곱 신경망 (Deep Convolutional Neural Network) 기반의 영상 인식 기술이 발전함에 따라 심층 학습을 이용한 객체 검출 관련 연구들이 활발히 진행되고 있다. 본 논문에서는 객체 검출에 가장 널리 사용되고 있는 Mask R-CNN의 경량화 모델을 제안하여 도로 내 다양한 객체들의 위치와 형태를 효율적으로 예측하는 방법을 제안한다. 또한, 주의 모듈(Attention Module)을 Mask R-CNN 내 각각 다른 역할을 수행하는 신경망 계층에 적용함으로써 특징 지도를 적응적으로 재교정(Re-calibration)하여 검출 성능을 향상시킨다. 실제 주행 영상에 대한 다양한 실험 결과를 통해 제안하는 방법이 기존 방법 대비 크게 감소된 신경망 매개변수만을 이용하여 고성능 검출 성능을 유지함을 보인다.
본 논문은 임베디드 GPU에서 실시간 동작하는 딥 컨볼루션 뉴럴 네트워크(CNN) 기반의 보행자 탐지 기법을 제안한다. 제안하는 기법에서는 먼저 영상 내 보행자 크기에 대한 통계적 분석을 통해서 최적의 컨볼루션 층의 개수를 결정한다. 또한, 본 논문에서는 다중 스케일 CNN 학습 기법을 적용하여 영상 내의 보행자 크기 변화에 강인한 탐지 기법을 개발한다. 컴퓨터 모의실험을 통해 제안하는 알고리즘이 임베디드 GPU에서 실시간 동작하면서도 기존의 기법과 비교하여 평균적으로 높은 정확도를 보임을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.