Acknowledgement
This research was supported by the Ministry of Science and ICT (MSIT), Korea, under the Information Technology Research Center (ITRC) support program (IITP-2021-0-02052) supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP). This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (2020-0-01080, Variable-precision deep learning processor technology for high-speed multiple object tracking).
References
- F. Sultana, A. Sufian, and P. Dutta, "Advancements in image classification using convolutional neural network", Proc. of IEEE 2018 Fourth Int. Conf. on Res. Comput. Intell. Commun. Netw., pp. 122-129, 2018.
- R. Hecht-Nielsen, "Theory of the backpropagation neural network", Proc. of IEEE IJCNN, pp. 593-605, San Diego, CA, 1989.
- D. H. Hubel and T. N. Wiesel, "Receptive fields and functional architecture of monkey striate cortex", J. Physiol., Vol. 195, No. 1, pp. 215-243, 1968. https://doi.org/10.1113/jphysiol.1968.sp008455
- K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position", Biol. Cybern., Vol. 36, No. 4, pp. 193-202, 1980. https://doi.org/10.1007/BF00344251
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition", Proc. of IEEE, Vol. 86, No. 11, pp. 2278-2324, 1998. https://doi.org/10.1109/5.726791
- https://www.cs.toronto.edu/~kriz/cifar.html (retrieved on Aug. 25, 2021).
- J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and F. F. Li, "Imagenet: A large-scale hierarchical image database", Proc. of IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 248-255, Miami, Florida, 2009.
- A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications", Proc. Conf. on Comput. Vis. Pattern Recognit., pp. 1704.04861(1)-1704.04861(9), Honolulu, Hawaii 2017.
- X. Zhang, X. Zhou, M. Lin, and J. Sun. "ShuffleNet: An extremely efficient convolutional neural network for mobile devices", Proc. of IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 6848-6856, Salt Lake City, Utah, 2018.
- I. N. Junejo and N. Ahmed, "Depthwise separable convolutional neural networks for pedestrian attribute recognition", SN Comput. Sci., Vol. 2, No. 2, pp. 1-11, 2021. https://doi.org/10.1007/s42979-020-00382-x
- G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks", Proc. of IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 4700-4708, Honolulu, Hawaii, 2017.
- W. Sun, X. Zhang, and X. He, "Lightweight image classifier using dilated and depthwise separable convolutions", J. Cloud Comp., Vol. 9, No. 1, pp. 1-12, 2020. https://doi.org/10.1186/s13677-019-0149-4