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Abstract 

Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced 

network bandwidth consumption, and improved the quality of service for user experience; however, it has 

also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud–

edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with 

complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-

learning network models. A lightweight deep-learning model was proposed to address these challenges. First, 

normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein 

generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates 

the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. 

Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed 

and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node 

are more consistent with the local characteristics, effectively improving the system's detection ability. In the 

designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional 

neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory 

network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted 

through the attention mechanism, improving the model's ability to identify abnormal traffic features. The 

proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 

datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, 

respectively, showing superior accuracy to other comparative models. The proposed lightweight deep 

learning network model has good application prospects for anomaly traffic detection in cloud–edge 

collaborative computing architectures. 
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1. Introduction 

The popularization of the Internet of Vehicles (IoV), mobile edge computing (MEC), industrial 

Internet, augment/virtual reality, and other technologies has led to an increase in intelligent terminal 

data. Centralized cloud computing cannot meet the requirements of the exponential growth in the num-
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ber of devices and data on the ultimate user experience. MEC can effectively compensate for the short-

comings of cloud computing by sinking the cloud-computing capability and IT service environment to 

edge nodes and providing storage or computing services to users nearby [1]. 

MEC has rich application scenarios, such as private network applications in enterprise parks and IoV, 

which present convenience and security challenges [2]. This is a threat to users. The MEC nodes on the 

edge gather sensitive information from surrounding users, and malicious users can use the edge nodes 

for horizontal or vertical attacks. Malicious users can be divided into two categories: attackers with 

illegal identities and those with legitimate identities (the most destructive attackers). Attackers with 

legitimate identities typically have internal permissions to understand the location of sensitive data. 

Attackers impersonating the identities of legitimate users and the intentional or unintentional malicious 

behaviors of legitimate users pose significant challenges to MEC security protection. However, new 

challenges have arisen owing to resource limitations and other characteristics of MECs [3]. 

Uploading behavioral data from many terminal equipment to cloud computing centers for pre-pro-

cessing and model training increases the training burden on the cloud, and mass data also incur addi-

tional time consumption during the upload process. Simultaneously, this may also lead to the leakage of 

user privacy. However, MEC nodes exhibit resource-constrained and distributed characteristics, which 

make it difficult for them to carry protection configurations in cloud computing [4]. Therefore, to 

enhance the quality of service (QoS) for user experience while considering the limited resources of 

MEC scenarios, lightweight monitoring of abnormal traffic within MEC scenarios is crucial for pro-

tecting MEC security. 

Existing anomaly detection methods in MEC scenarios experience hurdles, such as severe sample 

imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively 

training large-scale data or overly complex deep-learning network models. 

A lightweight deep learning network model, WGAN-CNN-BiLSTM, which uses Wasserstein genera-

tive adversarial networks (WGAN) [5], convolutional neural networks (CNN) [6], and bidirectional 

long short-term memory networks (BiLSTMs) [7] was proposed, implementing illegal intrusion traffic 

detection through collaborative computing. The training samples with voluminous data are stored on a 

cloud server with strong computing and storage capacity, and tasks with a small amount of calculation 

are unloaded to the users' ends and edge ends. This reduced the transmission delay of the calculation 

results and improved the QoS for the user. Among these, data preprocessing operations were performed 

at the users' end. At the edge ends, local data are expanded, and each edge node fine-tunes the already-

trained lightweight model based on local data to ensure that it is more in line with the local character-

istics, thereby effectively improving the detection ability of each edge node. Simultaneously, it avoids 

using abnormal traffic datasets in a single scenario and instead chooses traffic datasets from multiple 

scenarios for training to cope with complex and diverse attack types of traffic, thereby ensuring the 

feasibility of the designed solution. 

Section 2 introduces traditional abnormal traffic detection models based on cloud computing and 

abnormal traffic detection models based on edge or fog computing. Section 3 introduces cloud–edge 

architectures and the designed lightweight deep learning network model, WGAN-CNN-BiLSTM. 

Section 4 verifies the reliability of the proposed model through experiments on three datasets. Section 5 

discusses the experimental results, summarizes the limitations of the designed model, and presents 

prospects for the next steps of the study. 
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2. Related Works 

Along with the popularization of artificial intelligence and 5G communication, deep neural network 

(DNN) technology also shows certain advantages in big data processing and network intrusion detec-

tion and has been widely used [8-10]. For example, Kumar et al. [11] proposed an anomaly network 

detection method based on an improved particle swarm optimization algorithm that could effectively 

improve the recognition ability of data mining. Jiang et al. [12] proposed an improved support vector 

machine (SVM) model for an abnormal network traffic identification strategy and framework that can 

effectively identify abnormal network traffic and intrusion detection by coordinating packets with si-

milar traffic. However, this model is relatively simple, and it is difficult to deal with complex networks. 

The authors of [13] proposed a hierarchical deep learning scheme (STL-HDL) based on big data to 

detect abnormal network data traffic. It uses behavior and content characteristics to represent network 

traffic characteristics. Combined with the distribution characteristics of the data in the cluster, the 

reliability of intrusion detection was improved.  

According to the data characteristics of the power Internet of Things (IoT), Tang et al. [14] effec-

tively realized the detection of abnormal traffic in the power IoT by extracting network traffic cha-

racteristics, using machine learning to analyze and identify abnormal traffic, establishing attack models, 

and comparing them with equipment images. Among them, the method is traditional, and its processing 

performance is difficult to match with current Internet developments. 

Fei et al. [15] proposed an attack detection system (CNN-LSTM). Combining a CNN and an LSTM 

can ensure detection accuracy and effectively mitigate the impact of data imbalance. However, the 

impact of data redundancy and other factors was not considered, and the detection accuracy needs to be 

improved. 

Lee et al. [16] provided an anomaly-detection scheme (SVM-DAE) utilizing a SVM and a deep 

autoencoder (DAE) that can be directly deployed on resource-constrained devices. This scheme uses 

publicly available traffic data (including labeled malicious traffic) as the dataset for anomaly detection 

and binary classification, which solves the problem of feature redundancy to a certain extent; however, 

it requires samples to contain labels and have balanced characteristics. 

The scheme designed in [17] can be directly hosted and executed on an edge device. This scheme 

uses an isolation forest (iForest) to detect normal and abnormal traffic. The training dataset comprises 

traffic data, and the required training samples do not need to be labeled; therefore, it can deal with un-

known threats. 

The scheme proposed in [18] is managed by a cloud server for storing data, trained by fog nodes, and 

MEC servers for model training and anomaly detection using the sample-selected extreme learning 

machine (SS-ELM) algorithm. This reduces the computational burden on the cloud datacenter, reduces 

training time, and improves training accuracy. However, the KDD Cup'99 dataset used in the scheme 

cannot be used for evaluating network intrusion detection systems. 

Maimo et al. [19] designed a scalable anomaly-detection framework (DNN-LSTM) for 5G network 

user traffic. This framework uses deep learning technology to extract 144 traffic features from network 

traffic and detect user traffic in two stages. The first stage uses a DNN for anomaly detection, and the 

second stage uses LSTM for anomaly detection and realizes the resource consumption optimization of 

the detection system. However, the QoS for user experience has not been considered. 

To effectively improve the QoS of the user experience, [20] offloaded the computing tasks of the 
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core network to the MEC server on the edge side based on the MEC method. Driven by real user call 

records, the feedforward DNN algorithm was used for anomaly detection, overcoming the limitations of 

high false positives and low accuracy and improving the quality of user service experience. Based on 

this, Hussain et al. [21] achieved the same goal by combining cell region division with a CNN (CRD-

DNN). However, these methods have difficulty addressing the issue of abnormal sample feature positions. 

To address the issue of the abnormal location of sample features, De Souza et al. [22] proposed a 

combined framework based on random forest and deep neural network (RF-DNN) for fog computing 

environments, and the authors of [23] proposed a combined framework integrating deep forest and 

biological heuristic algorithm (DR-BIA), which effectively improved the robustness of intrusion de-

tection. However, these methods do not consider the issue of an imbalance between positive and 

negative samples. 

In summary, existing network intrusion detection methods typically have the following issues: (1) 

many methods complete all training tasks on cloud computing platforms, greatly increasing the latency 

during data transmission, resulting in a lower quality of user service experience; (2) many methods 

based on edge computing fail to consider the imbalance of a small number of samples, which reduces 

the model’s training effect; and (3) in the face of complex network traffic attacks, many methods based 

on edge computing are difficult to deal with effectively. 

To solve these three problems, different coping strategies have been adopted, and a lightweight deep 

learning combination architecture integrating CNN-BiLSTM and an attention mechanism has been 

proposed. The three main points of the innovation are as follows. 

(1) Compared to traditional cloud-computing models, adopting a cloud–edge collaborative compu-

ting architecture can effectively reduce the computational pressure on cloud-computing centers. 

Large computing and training tasks that do not require real-time responses are completed in the 

cloud computing center, and preprocessing operations are completed on the user side without 

computing resources on the edge and cloud sides. Simultaneously, lightweight network models 

that have already been trained in the cloud are deployed on the edge side, and only local data are 

needed to fine-tune the model, which can adaptively improve the local detection performance of 

each edge node and reduce the transmission delay of the calculation results, thus greatly 

improving the quality of user experience. 

(2) On the edge side, the trained WGAN model is used to effectively expand the data samples, 

which effectively solves the problem of a few types of imbalances while occupying a small 

amount of edge-computing resources. 

(3) For complex network traffic attack data, the fusion of CNN-BiLSTM and the attention mecha-

nism can simultaneously consider spatial, temporal, and important features, thereby effectively 

improving the overall accuracy of abnormal traffic detection. 

 

 

3. Network Anomaly Traffic Model based on Deep Learning in 

Cloud–Edge Collaborative Environment 

3.1 Cloud–Edge System Architecture Model 

Fig. 1 shows the designed cloud–edge architecture. The services for many mobile users in the 

coverage area are provided by the edge node, which can be connected to the cloud service center. Each 
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edge node can make predictions by computing to proactively cache the content that users may request 

in advance, reduce the user waiting delay, and thus enhance the quality of experience (QoE) [24]. Users 

can obtain the demand content locally through an edge node or obtain the requested content from the 

cloud center. 

Normalization on the user side is used to preprocess user behavior data, and each edge node receives 

requests from users in the service area at a time step through the user interface module and stores the 

request information in the local database [25]. The edge node sends the received request information to 

the request processing module. The trained WGAN is used to expand the data of a small number of 

samples, uses the trained lightweight deep learning model to predict the user's future requests (request 

prediction module), and cooperates with neighboring edge nodes to make cache decisions (cache 

decision module) using the prediction information. Finally, the cache management module determines 

the local active cache content. Because users can constantly enter or leave the service scope of all edge 

nodes and new content is generated constantly, users' demand for content is constantly changing; 

therefore, the request prediction model is time-sensitive [26]. Additionally, it is necessary to update the 

data using new training data. Therefore, the current local node can combine multiple neighboring edge 

nodes to obtain a new model via deep learning training [27]. 

 

 
Fig. 1. Cloud–edge collaborative system architecture. 
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3.2 CNN-BiLSTM Model 

A CNN-BiLSTM model was proposed to extract high-dimensional traffic characteristics, and its 

structure is shown in Fig. 2 [28]. 

In the CNN, two groups of convolution-pooling layers were used to extract the spatial features. The 

features were then input into the BiLSTM network to collect the time features. A total of 128 and 64 

neurons were set in the two layers of BiLSTM. The final output was the high-dimensional 

spatiotemporal features extracted by the CNN-BiLSTM neural network and processed by the attention 

mechanism. The AdamW optimizer was selected in CNN-BiLSTM, selecting the ReLU and sigmoid 

functions as the activation functions of the CNN and BiLSTM layers, respectively, and the Kaming and 

Xavier initialization methods were used to set up the initialization parameters of CNN and BiLSTM, 

respectively. 

 

 
Fig. 2. Structure of CNN-BiLSTM model. 
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corresponding weights and deviations. Each neuron in the convolution layer is connected to a neuron in 

the previous layer [30]. During operation, the input sequence data features are scanned regularly and 

summed by multiplying the matrix elements in the area where the previous layer is close to each other, 

and the deviation amount is stacked [31]. 

The pooling layer in the CNN is used to select the processed features and filter the information, and 

the preset pooling function is used to replace a single point with the feature statistics of the adjacent 

area. The fully connected layer is located at the last position in the CNN, and the signal is transmitted 

only to the other fully connected layers. The role of the fully connected layer is to combine the pooled 

features nonlinearly and transmit the results to the output layer. 

 

 
Fig. 3. CNN model. 

 

3.4 BiLSTM Model 

The LSTM neural network [32] comprises an input gate (IG), an output gate (OG), and a forgetting 
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and backward directions of the hidden layer of the LSTM, and more data features can be obtained 

through this BiLSTM neural network. 

The update process for BiLSTM is as follows: 

 

ℎ� = ���ℎ���, ���
ℎ� = ���ℎ���, ��� 

��� = �
�ℎ� + ��
�ℎ� + �
, 

(2) 

 

where �� and �� are LSTM neural network operations and �
� and ��
� are the forward and backward 

direction-calculated weights, respectively. 

 

 
Fig. 4. Structure of BiLSTM model. 
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Fig. 5. Structure of attention mechanism model. 

 

 

4. Experiment and Analysis 

Table 1 lists the configuration of the experimental environment. The deep learning frameworks 

TensorFlow and Keras are adopted, and GPU is used for acceleration. Pandas is mainly used for data 

reading and preprocessing, and sk-learning is used to calculate evaluation indicators and perform 

machine learning comparison experiments. 

 

Table 1. Experimental environment 

Software and hardware Type 

CPU Intel Core i7-7700HQ 

Memory 32 GB 

GPU NVIDIA Tesla T4 16 GB 

Running system Windows 10 

Programming language Python 3.8 

Data processing Pandas 1.1.2 

Machine learning Sklearn 0.23.2 

 

4.1 Datasets 

The NSL-KDD [34], UNSW-NB15 [34], and CIC-IDS2018 datasets [35] were used to demonstrate 

the proposed model. 

(1) NSL-KDD dataset: the experimental network traffic dataset used the KDDTrain+ and 

KDDTest+ files. The NSL-KDD dataset does not contain redundant or duplicate records; 

therefore, it is widely used as a benchmark dataset in many intrusion-detection systems. The 

training set, KDDTrain+, included tag samples of 22 attack types, and the test set, KDDTest+, 

included tag samples of 39 attack types. Therefore, the NSL-KDD dataset can be used to 

estimate the generalization ability, making the detection ability of the model more accurate. 

Each traffic sample in the dataset contains 41 characteristics, including 38 numerical values 

(such as "int 64" or "float 64") and 3 symbolic values (such as "object"). Additionally, 

KDDTrain+ and KDDTest+ contain multiple-class tags. However, this model was used to detect 

exceptions and perform only binary classification. Therefore, this study replaced the dataset 

labels. The normal traffic label is zero, and the abnormal traffic label is 1. 
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(2) UNSW-NB15 dataset: an open dataset for network intrusion detection. UNSW-NB15 includes 

nine attack types and one normal attack type. It comprises three nominal characteristics, two 

binary characteristics, and 37 numerical characteristics. It is recorded in chronological order and 

fully represents the temporal correlation between the data. In the experiment, 70% of the dataset 

was used for training and 30% for testing. 

(3) CIC-IDS2018 dataset: many tools are available to convert raw PCAP packets into network 

stream data. One of the tools that can be used to convert PCAP data into network traffic data is 

CICFlowMeter, created by the New Brunswick University. CICFlowMeter is a network traffic 

generator written in Java. It accepts the original PCAP as the input and outputs the two-way 

network traffic. Traffic direction can be determined from the first data packet. In the field of 

intrusion detection, because many datasets are internal (for example, the government or financial 

institutions cannot disclose their data for privacy protection), many datasets cannot reflect the 

current network situation or lack statistical characteristics. Therefore, obtaining a dataset with 

full attack coverage, high data richness, real and reliable data, and timeliness is difficult. 

Simultaneously, the quality of the dataset affected the effectiveness of the intrusion detection 

model. After comprehensively considering the factors of data size, type, timeliness, and 

authenticity, CIC-IDS2018 was selected as the evaluation dataset. The captured raw PCAP data 

were used to generate 80 stream characteristics using the CICFlowMeter. 

 

4.2 Evaluating Indicator 

Accuracy, precision, recall, and F1 values were used to evaluate the performance of the mining 

model. The calculations are as follows: 

 

�������� =
�	 + �


�	 + �	 + �
 + �

 

	���
�
�� =
�	

�	 + �	
 

�1 = 2 ×
	���
�
�� × ������

	���
�
�� + ������
, 

(6) 

 

where TP is the number of positive samples classified as positive, TN is the number of negative 

samples classified as negative, FP is the number of positive samples classified as negative, and FN is 

the number of negative samples classified as positive. 

 

4.3 Model Training 

4.3.1 Result analysis of the evaluating indicator 

Fig. 6 shows the changes in the evaluation indicator values of the proposed model with epochs for the 

three datasets. 

As shown in Fig. 6, the proposed WGAN-CNN-BiLSTM model achieved a relatively ideal abnormal 

traffic mining effect, and each evaluation indicator performed well. The proposed model combines the 

CNN-BiLSTM network and attention mechanism to better focus on the characteristics of abnormal 

traffic, especially for datasets with rich data characteristics. Its prediction accuracy is higher, and the 

precision of the NSL-KDD dataset exceeds 0.974. 
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(a) (b) 

 

(c) (d) 

Fig. 6. Changes in model evaluation metrics for different datasets: (a) accuracy, (b) precision, (c) recall, 

and (d) F1 value. 

 

4.3.2 Model training time 

The training times of the proposed WGAN-CNN-BiLSTM for the three experimental datasets are 

shown in Fig. 7. 

 

 
Fig. 7. Model training time for different datasets. 
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From Fig. 7, the increase in data volume leads to continuous growth in the training time of WGAN-

CNN-BiLSTM, but the growth rate is obvious in the later stage. This is mainly because the amount of 

data is too large and the edge nodes are limited, resulting in network congestion. Therefore, when the 

amount of data was 5,000 MB, the time was close to 16 seconds. 

 

4.4 Model Performance Verification 

The reliability of the WGAN-CNN-BiLSTM CNN–BiLSTM was analyzed by comparing it with 

several other deep-learning network models, including SVM-DAE [16], DNN-LSTM [19], CRD-DNN 

[21], RF-DNN [22], and DR-BIA [23]. The test results of the four models on the NSL-KDD, UNSW-

NB15, and CIC-ISD2018 datasets are presented in Tables 2–4. 

 

Table 2. Evaluating indicator of different models on NSL-KDD dataset 

 SVM-DAE DNN-LSTM CRD-DNN RF-DNN DR-BIA 
WGAN-CNN-

BiLSTM 

Accuracy 0.943 0.957 0.953 0.961 0.965 0.974 

Precision 0.938 0.954 0.949 0.958 0.964 0.979 

Recall 0.946 0.956 0.946 0.972 0.980 0.975 

F1 0.949 0.960 0.950 0.963 0.962 0.972 

 

Table 3. Evaluating indicator of different models on UNSW-NB15 dataset 

 SVM-DAE DNN-LSTM CRD-DNN RF-DNN DR-BIA 
WGAN-CNN-

BiLSTM 

Accuracy 0.854 0.903 0.898 0.919 0.914 0.925 

Precision 0.861 0.916 0.907 0.918 0.920 0.930 

Recall 0.878 0.922 0.915 0.906 0.919 0.949 

F1 0.870 0.919 0.911 0.915 0.921 0.939 

 

Table 4. Evaluating indicator of different models on CIC-IDS2018 dataset 

 SVM-DAE DNN-LSTM CRD-DNN RF-DNN DR-BIA 
WGAN-CNN-

BiLSTM 

Accuracy 0.887 0.929 0.921 0.948 0.941 0.953 

Precision 0.893 0.935 0.928 0.960 0.948 0.958 

Recall 0.905 0.941 0.936 0.963 0.963 0.970 

F1 0.899 0.938 0.932 0.959 0.955 0.956 

 

Tables 2–4 show that, owing to the comprehensive network features, reliable data of the NSL-KDD 

dataset, and all comparison models being deep learning network models, all models can achieve high 

detection results. However, the UNSW-NB15 dataset contains fewer data features and more types of 

attacks, making mining more difficult. Most models achieved lower results than for the other two 

datasets. Compared with the SVM-DAE and CRD-DNN models, DNN-LSTM considers both spatial 

and temporal features in traffic data, thus achieving better results. However, LSTM can only capture 

unidirectional relationships between temporal features, whereas BiLSTM in the proposed WGAN-

CNN-BiLSTM model can capture bidirectional relationships between temporal features, which is more 

advantageous than LSTM. The RF-DNN and DR-BIA models can effectively solve the problem of 
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abnormal sample feature positions, thus achieving higher performance than the SVM-DAE, CRD-

DNN, and DNN-LSTM models. However, class imbalance issues were not considered in the RF-DNN 

and DR-BIA models. The proposed WGAN-CNN-BiLSTM model, by introducing WGAN for data 

expansion, can effectively alleviate class imbalance issues and balance the advantages of spatial and 

temporal features in SVM-DAE, CRD-DNN, and DNN-LSTM models. In addition, by introducing 

attention mechanisms to strengthen important features and filter out unimportant features, the 

effectiveness of the WGAN-CNN-BiLSTM can be further optimized. Therefore, the proposed model 

achieves the best results in most cases. 

 

 

5. Conclusion 

Existing anomaly detection methods in cloud–edge collaborative computing scenarios face many 

challenges, such as severely imbalanced samples, difficulty in dealing with complex network traffic 

attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network 

models. A lightweight deep learning model was proposed to address these challenges. The experimental 

results obtained from the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets are as follows: 

(1) By combining cloud computing with edge computing, large-scale computing tasks are comple-

ted in the cloud, small- and medium-sized computing tasks are completed on the edge, and very 

small computing tasks are completed on the user side, effectively reducing the user waiting 

delay. Once the data volume reached 5000MB, the training time of the proposed WGAN-CNN-

BiLSTM model was close to 16 s, improving the quality of the user experience. 

(2) The WGAN is used for data augmentation, and the lightweight network model designed by 

integrating the CNN, BiLSTM, and Attention mechanisms effectively improves the detection 

accuracy. For example, the accuracy of the NSL-KDD dataset exceeded 0.974. 

(3) Compared with other advanced models, it was found that, temporal characteristics and data class 

imbalance as well as the spatial characteristics of traffic have a significant impact on perfor-

mance, both of which are highly worthy of attention. 

Although the proposed WGAN-CNN-BiLSTM model achieved good performance indicators, it had 

certain limitations. For example, 

(1) A lightweight deep learning network model was designed. However, to better meet the real-time 

response needs of users, the model must be further optimized to reduce its training time on the 

edge side, thereby improving the QoS of the user experience. 

(2) In the cloud–edge collaborative computing architecture studied in this paper, all edge nodes are 

independently and locally trained, which prevents timely interaction and parameter sharing, 

resulting in an improved overall performance of the WGAN-CNN-BiLSTM model to a certain 

extent. 

To address the limitations of this study, the WGAN-CNN-BiLSTM model will be further optimized 

to reduce the number of trainable parameters, thereby making it lightweight. Additionally, federated 

learning was introduced to improve the cloud–edge collaborative computing architecture, achieving 

model parameter sharing among all edge nodes while protecting user data privacy. Thus, the overall 

performance of the lightweight deep learning network model can be improved through large-scale joint 

training. 
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