• Title/Summary/Keyword: Lighting Communication

Search Result 394, Processing Time 0.032 seconds

PLC Filter Capacity Improvement and Efficiency Evaluation of Smart Street Lighting System (스마트 가로등 시스템의 전력선통신 필터 성능 개선 및 효율 평가)

  • Kim, Myung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.154-157
    • /
    • 2009
  • In order to give handiness to the management of the existing street lighting system which is based on the one way communication and to reduce the maintenance cost, the power line communication filter in the two way communication which is based on the CDMA communication and power line communication was improved and accordingly the stability of the communication performance was improved. Also, the efficiency of existing street lighting system and smart street lighting system was evaluated as Visual studio system. As a result, when the number of street lights is 10,000, the hours of daily work fell 50% and the number of necessary maintenance staff decreased 40%. Compared to the maintenance costs of the existing street lighting system, it could be expected to have the cut costs of almost 100 million won a year on the basis of 60 switch board and 1,200 street lights.

A Study on the Communication Trend of Contemporary Lighting Design (현대조명디자인의 커뮤니케이션 경향에 관한 연구)

  • Lee, Chang-Yoon;Oh, In-Wook
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.1 s.60
    • /
    • pp.119-125
    • /
    • 2007
  • Changing depends on the one and only out of many design elements constituting the outside, and a Lighting design has an easy characteristic among space. Therefore accuse various sensitivity to watch when lighted up the same environment with Lighting of other colors, and it is an interesting point to show a communication tendency of a Lighting design in the present age escape from a general idea transmit a change of sight to a man of experience directly, and to clarify space simply, and to show various power of expression. The study of a book tried to make a searching examination for a generation cause of this tendency by trying to observe the modern Lighting design tendency that various desires were reflected in of the modern society in various general ideas of communication.

The Color Temperature Flexibility-typed LED Lighting Control System (색온도 가변형 LED 조명제어시스템)

  • Kim, Hye-Myeong;Yang, Woo-Seok;Cho, Young-Seek;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.284-288
    • /
    • 2015
  • The color temperature flexibility-typed Lighting Emitting Diode(LED) lighting control system proposed in this thesis employs Pulse Width Modulation(PWM) technique to control the brightness of LED lighting. The LED lighting used as a light source has 20W downlight composed of two types of LED chips: one is Warm White and the other is Cool white. One multi-sensor module consisting an infrared sensor, an illumination sensor, and a temperature sensor was made, to which Bluetooth wireless communication technique was applied to enable a smartphone application to control lighting brightness and identify the information collected from the sensor. CS-1000, a spectroradiometer, was used to measure LED dimming control and the changing values of a color temperature in eight steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5600K of Cool White LED.

Indoor Wireless Optical Communication Using a Lighting LED and a Solar Cell (조명용 LED와 솔라 셀을 이용한 실내 무선광 통신)

  • Lee, Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.285-291
    • /
    • 2010
  • In this paper, we demonstrate that indoor wireless optical communication is possible with an LED and a solar cell. A lighting LED is used for lighting and signal transmission. A solar cell is used for collecting light energy and signal detection. This scheme is very useful because transmission is possible without any additional communication systems. In experiments, wireless optical communication was carried out at a data rate of 9.6 kbps using a lighting LED and a solar cell.

Alternating Current Input LED Lighting Control System using Fuzzy Theory

  • Lee, Jae-Kyung;Yim, Jae-Hong
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.214-220
    • /
    • 2021
  • In this study, we constructed several scenarios that are required for LED lighting, and we designed and implemented an LED lighting control system to operate these scenarios to confirm their behavior. An LED lighting control system is a hybrid control board that is designed by combining LED controllers and SMPS, consisting of an AC/DC power supply part that converts AC 220 V into DC 12 V, and a drive and control part that controls the scenario and color of the LED module. Conventional LED light controllers have an input power of DC 12 V, so when using the input AC 220 V, the SMPS must be connected to the LED light controller. To eliminate this inconvenience, a hybrid LED lighting control system was configured to combine LED lighting controllers and SMPS into one control system. Furthermore, we designed a control system to represent the most appropriate color according to the input of the distance and illumination using a fuzzy control system to conduct computer simulations.

Design of LED Dimming Lighting System using Ultrasonic Sensor (초음파 센서를 이용한 LED 디밍 시스템조명 설계)

  • Yang, Woo Seok;Kim, Hye myeong;Cho, Young seek;Park, Dae Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • In this paper, an LED lighting system that is capable of automatic or maunal dimming control using a ultrasonic sensor and Bluetooth wireless communication technology is presented. The LED lighting system consists of a ultrasonic sensor, microcontroller unit, Bluetooth wireless communication, LED driver, and LED light source. By using the implemented LED lighting system sample, it is shown that the automatic and manual dimming control is realized. By using the ultrasonic sensor, the LED lighting is automatically brighter or dimmer depending on the distance between the sensor and an object. When using a smartphone that includes Bluetooth wireless communication function, one can not only manually control the brightness of the LED lighting from level 1 to 10, but also monitor the distance between the sensor and object on the smartphone.

A study on lighting system for LED color temperature control using wireless communication and smartphone (무선 통신과 스마트폰을 이용한 LED 색온도 제어 조명 시스템에 관한 연구)

  • Hong, Young-Jin;Lim, Soon-Ja;Lee, Wan-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.72-77
    • /
    • 2017
  • Lighting systems in modern society has been developed using a combination of IT technology and LED lighting for the purpose of bringing about changes in human-centered natural lighting and to take advantage of the efficient management and energy saving of LED lighting. In this paper, we propose an LED lighting control system that can control the color temperature and brightness of LED lighting composed of 3000K Warm LEDs and 6000K Cool LEDs by using an Arduino Due and wireless communication technology such as Bluetooth and Zigbee. The Arduino Due allows the color temperature of the lighting to be adjusted in several steps by controlling the duty rate and enables many lights to be controlled using Zigbee communication capable of 1: N multiple communication. By using Bluetooth communication, it is possible to easily control the LED lighting by means of a smartphone application, thereby enhancing the convenience for the user. The wireless communication based LED lighting control system implemented in this study cannot only provide human-centered lighting through its color temperature control from 3067K to 5960K and illumination control, but can also reduce the power consumption and be used as a natural-friendly lighting system.

New Type of White-light LED Lighting for Illumination and Optical Wireless Communication under Obstacles

  • Choi, Su-il
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • Visible light communications (VLC) use modern solid-state light-emitting diodes (LEDs) to broadcast information. Emerging white-light LEDs allow the combination of lighting and optical wireless communication in one optical source. In this paper, a new LED lighting design using one-chip-type white LEDs is proposed for efficient illumination and optical wireless communications under the existence of several obstacles. Lighting and communication performance are analyzed to show the effectiveness of the proposed LED lighting. Specifically, the signal-to-noise ratio considering intersymbol interference and the bit-error rate of variable pulse position modulation (VPPM) with dimming control are considered.

Design of LED Lighting System using Bluetooth Wireless Communcation (Bluetooth 무선 통신 기능을 이용한 LED 조명시스템 설계)

  • Kim, Hye Myeong;Yang, Woo Seok;Cho, Young Seek;Park, Dae Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.2
    • /
    • pp.1-7
    • /
    • 2015
  • The Light Emitting Diode(LED) lighting control system proposed in this thesis is made up of a sensor module, a microcontroller, Bluetooth wireless communication, LED Driver, and LED downlight. The sensor module, comprised of an infrared sensor, an illumination sensor, and a temperature sensor, was designed to one Printed Circuit board(PCB). The system is able to identify the environment information collected by the sensor, and make it possible to control lighting automatically and manually through sensors. In addition, depending on users' conditions, a color temperature can be controlled. CS-1000, a spectroradiometer, was employed to measure the changing values of a color temperature in 8 steps. According to a test, it was found that it was possible to change a color temperature from 3187K of Warm White LED to 5598K of Cool White LED. The Bluetooth based wireless communication technique makes it possible to control more lighting devices than other wireless communication techniques does.

Wired/Wireless LED Lighting Communication Using Reconfigurable Peripheral Unit (재구성형 주변장치유닛을 사용한 유무선 LED 조명 통신)

  • Yoo, Sehoon;Gong, Jungchul;Kim, Kichul
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.407-417
    • /
    • 2013
  • In this paper, a reconfigurable peripheral unit for LED lighting communication is presented. Embedded lighting devices require various communication protocols. Usually, serial communication protocols and lighting control communication protocols such as DALI, DMX512, UART, SPI, IrDA, etc. are used in lighting devices. When the requirements of communication protocols are satisfied with separate IPs, the cost and the power consumption can considerably increase. We propose a reconfigurable communication peripheral unit which uses analysis of signal formats of the protocols. The gate count of the reconfigurable peripheral unit uses only 57% of the gate count of the separate implementation. Also, in this paper, a mapping table based DALI-ZigBee interfacing method for flexible lighting network configurations is proposed. Using this method, various DALI-ZigBee network systems can be easily set up. An LED lighting system platform is implemented to verify the operation of the DALI-ZigBee interfacing method. The reconfigurable peripheral unit and the DALI-ZigBee interfacing method can be efficiently used to implement various wired/wireless lighting communication systems.