• Title/Summary/Keyword: Light-emitting diodes(LEDs)

Search Result 363, Processing Time 0.021 seconds

Optimization of Thermal Performance in Nano-Pore Silicon-Based LED Module for High Power Applications

  • Chuluunbaatar, Zorigt;Kim, Nam-Young
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • The performance of high power LEDs highly depends on the junction temperature. Operating at high junction temperature causes elevation of the overall thermal resistance which causes degradation of light intensity and lifetime. Thus, appropriate thermal management is critical for LED packaging. The main goal of this research is to improve thermal resistance by optimizing and comparing nano-pore silicon-based thermal substrate to insulated metal substrate and direct bonded copper thermal substrate. The thermal resistance of the packages are evaluated using computation fluid dynamic approach for 1 W single chip LED module.

3-Dimensional Micro Solder Ball Inspection Using LED Reflection Image

  • Kim, Jee Hong
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.39-45
    • /
    • 2019
  • This paper presents an optical technique for the three-dimensional (3D) shape inspection of micro solder balls used in ball-grid array (BGA) packaging. The proposed technique uses an optical source composed of spatially arranged light-emitting diodes (LEDs) and the results are derived based on the specular reflection characteristics of the micro solder balls for BGA A vision system comprising a camera and LEDs is designed to capture the reflected images of multiple solder balls arranged arbitrarily on a tray and the locations of the LED point-light-source reflections in each ball are determined via image processing, for shape inspection. The proposed methodology aims to determine the presence of defects in 3D BGA shape using the statistical information of the relative positions of multiple BGA balls, which are included in the image. The presence of the BGA balls with large deviations in relative position imply the inconsistencies in their shape. Experiments were conducted to verify that the proposed method could be applied to inspection without sophisticated mechanism and productivity problem.

Environmental Control in the Plant Factory System Influences Year-Round Production of Allium hookeri Leaves (삼채(Allium hookeri) 잎 연중생산을 위한 식물공장 환경제어 효과)

  • Jeong-Wook Heo;Jeong-Hyun Baek;Sung-Hyen Lee;Min-Jeong Kim;Chang-Kee Shim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.279-285
    • /
    • 2023
  • The demand for the fresh leaf of hooker chive, which is mainly used as functional roots and contains dietary sulfur or saponin, is increasing, but the leaves are only harvested 3-4 times per year under conventional field conditions. A plant factory system with different light qualities or intensities was applied for year-round production of the fresh leaves. Hooker chive (Allium hookeri) roots were hydroponically cultured under the plant factory with a mixture of blue plus red LEDs (Light-Emitting Diodes) and fluorescent lights for 50 weeks. Maximum leaf growth was attained with the 1.5 dS/m EC in the culture medium under the plant factory. The average leaf and shoot numbers of hooker chive grown hydroponically under a mixture of 200 µmol/m2/s LEDs increased by 147% and 140%, respectively compared to those under 100 µmol/m2/s LEDs at the 10th harvest. The leaf length of hooker chive grown under the LEDs treatment with the lowest light intensity significantly increased by 27% compared with the natural light treatment at the 10th harvest. However, there was no significant difference in leaf pigmentation between natural and 200 µmol/m2/s LEDs treatments. Plant factory with the mixture LEDs of blue and red lights can be applied for year-round production of hooker chive fresh leaves to ensure a stable supply of leafy vegetable throughout the year.

A High Voltage LED Drive IC using Voltage Clamp Bias (Voltage Clamp Bias를 사용한 고전압 LED Drive IC)

  • Kim, Seong-Nam;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.559-562
    • /
    • 2009
  • Due to the enormous progress achieved in light emitting diodes (LEDs) LEDs have been become a good solution for lightings. In LED driver for lighting applications, it is required high input voltage to drive more LEDs. Therefore, high-voltage should be changed to low-voltage to supply power for drive IC. In this paper, LED drive IC using voltage clamp bias circuit, it use a hysteretic-buck converter topology was proposed and verified through experiments.

A High-voltage LED Drive IC Using a Voltage Clamp Bias (Voltage Clamp Bias를 사용한 고전압 LED Drive IC)

  • Kim, Seong-Nam;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.85-87
    • /
    • 2009
  • Due to the enormous progress in light emitting diodes (LEDs), LEDs have been become a good solution for lightings. In LED driver for lighting applications, it is required a high input voltage to drive more LEDs. Therefore, a high-voltage should be changed to low-voltage to supply power for drive IC. In this paper, a LED drive IC with hysteretic-buck converter topology using a voltage clamp bias circuit was proposed and verified through simulations.

  • PDF

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes (세슘납할로겐화물 페로브스카이트 기반 LED 기술개발 동향)

  • Pyun, Sun Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.737-749
    • /
    • 2016
  • Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.

Behavioral Monitoring System for Mud Shrimp Upogebia major and the Photoresponse to Illumination with Different Wavelength LEDs (쏙(Upogebia major)의 광반응 분석시스템 구축과 발광다이오드(Light-Emitting Diode) 파장별 행동분석)

  • Jang, Jun-Chul;Chung, Jong-Kyun;Hur, Youn-Seong;Song, Jae-Hee;Kim, Jong-Myoung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.4
    • /
    • pp.413-420
    • /
    • 2017
  • The increase in the number of mud shrimps Upogebia major is a concern because of their negative effects on shellfish aquaculture, including Manila clam Venerupis philippinatum along the west coast of Korea. This study developed a behavioral analysis system for aquatic animals using a set of monochromatic light-emitting diode (LED) modules covering the visible light range at similar intervals. Movements of mud shrimp were monitored using a tracking system under illumination with infra-red light and an LED of 660 nm wavelength without provoking stimulation. The minimum light intensity needed to induce a photoresponse by the mud shrimp was $10{\mu}mole/m^2/s$ under the conditions tested. Of the six kinds of LED illuminations tested, the most sensitive response was obtained with illumination with the 505 nm LED, followed in order by LEDs with peak wavelengths of $525nm{\fallingdotseq}465nm$ > $405nm{\fallingdotseq}590nm$ > 660 nm. These findings should help to identify LED sources that efficiently induce movement of the mud shrimp and also for monitoring movement without stimulating.

Effect of Light-Emitting Diodes on Cordycepin Production in Submerged Culture of Paecilomyces japonica

  • HA, Si Young;JUNG, Ji Young;YANG, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.548-561
    • /
    • 2020
  • Paecilomyces japonica is widely cultured to produce mycelium for medicinal and health food use. Illumination is an important factor in the growth and production of mycelium in submerged culture. The effects of different light-emitting diode (LED) combinations on the growth and cordycepin content as bioactive substances of mycelium were investigated. The results showed that the mycelium dry weights were lower under dark condition and red LED treatments. Dark condition, fluorescent light, and ultraviolet-A failed to increase the cordycepin content. Blue light was necessary to increase the cordycepin content, and a red-to-blue ratio of 3:7 induced the highest cordycepin content. The cordycepin contents of mycelium in submerged culture were significantly higher in a 12 h/day illumination time under red and blue (red-to-blue ratio of 3:7) LED treatments, showing an increase of up to 38% compared with those under the fluorescent-light control condition. The results demonstrated the roles of light with different wavelengths on the biosynthesis of cordycepin as bioactive substances. The low-heat release and replacement of traditional fluorescent lights with low-energy-consuming LEDs could increase the contents of bioactive substances. After optimization of the cordycepin production using response surface methodology (Box-Behnken design) to its canonical form, the optimum combination was found to be as follows: illumination time = 17.7 h/day, sugar content in the medium = 9.7 g/50 mL, and incubation time = 61.2 h. The model predicted a maximum response of 3779.2 ㎍/mL cordycepin yield.

Photocatalysis of Sub-ppm-level Isopropyl Alcohol by Plug-flow Reactor Coated with Nonmetal Elements Irradiated with Visible Light

  • Jo, Wan-Kuen
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.419-425
    • /
    • 2012
  • This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow reactor irradiated by 8-W daylight lamp or visible light-emitting-diodes (LEDs). In addition, the generation yield of acetone during photocatalytic processes for IPA at sub-ppm levels was examined. The surface characteristics of prepared S- and N-$TiO_2$ photocatalysts were analyzed to indicate that they could be effectively activated by visible-light irradiation. Regarding both types of photocatalysts, the cleaning efficiency of IPA increased as the air flow rate (AFR) was decreased. The average cleaning efficiency determined via the S-$TiO_2$ system for the AFR of 2.0 L $min^{-1}$ was 39%, whereas it was close to 100% for the AFR of 0.1 L $min^{-1}$. Regarding the N-$TiO_2$ system, the average cleaning efficiency for the AFR of 2.0 L $min^{-1}$ was above 90%, whereas it was still close to 100% for the AFR of 0.1 L $min^{-1}$. In contrast to the cleaning efficiencies of IPA, both types of photocatalysts revealed a decreasing trend in the generation yields of acetone with decreasing the AFR. Consequently, the N-$TiO_2$ system was preferred for cleaning of sub-ppm IPA to S-$TiO_2$ system and should be operated under low AFR conditions to minimize the acetone generation. In addition, 8-W daylight lamp exhibited higher cleaning efficiency of IPA than for visible LEDs.

Photoluminescence properties and energy transfer of $Dy^{3+}$ and $Tm^{3+}$ co-activated $CaZrO_3$ phosphor for white LEDs

  • Li, Yezhou;Wang, Yuhua
    • Journal of Information Display
    • /
    • v.12 no.2
    • /
    • pp.93-96
    • /
    • 2011
  • Single-phased $CaZrO_3:Dy^{3+}$, $Tm^{3+}$ series have been successfully synthesized by solid-state reaction, and their luminescence properties were investigated. Under 355 nm excitation, $CaZrO_3:Dy^{3+}$ series showed characteristic emission of $Dy^{3+}$, which exhibited yellowish white color. By introducing $Tm^{3+}$ into the matrix, the emitted hue of the $Dy^{3+}$-doped sample could be easily tailored to white, and simultaneously, energy transfer from $Tm^{3+}$ to $Dy^{3+}$ was observed. The color coordinates of the optimum white-emitting sample were (0.321, 0.323), which were very close to the data of the National Television Standard Committee (0.33, 0.33). The co-activated phosphors presented good match to ultraviolet light-emitting diodes (LEDs), which revealed that they could be novel promising phosphors utilized in white LED application.