DOI QR코드

DOI QR Code

Technology Development Trends of Cesium Lead Halide Based Light Emitting Diodes

세슘납할로겐화물 페로브스카이트 기반 LED 기술개발 동향

  • Pyun, Sun Ho (Korea Institute of Science and Technology In formation, ReSEAT Program)
  • 변선호 (한국과학기술정보연구원 ReSEAT 프로그램)
  • Received : 2016.10.11
  • Accepted : 2016.11.01
  • Published : 2016.12.01

Abstract

Recently perovskite materials with much cheaper cost and marvellous optoelectronic properties have been studied for next generation LED display devices overseas. Technology development trends of inorganic $CsPbX_3$(X=halogen) based LEDs (PeLEDs) with assumed high stability were investigated on literature worldwide. It was found that syntheses methods of these nanocrystals (NCs, mainly quantum dots, QDs) made great progress. A new room temperature synthesis method showed outstanding PL (photoluminescence) properties such as high quantum yield (QY), narrow emission width, storage stability comparable with, or often exceeding those of conventional hot injection method and CdSe@ZnS type inorganic colloidal QDs. PeLEDs with shell layers might be more promising, indicating urgent real research start of this solution processing technology for small businesses in Korea.

Keywords

References

  1. Tsuzuki and S. Tokito, Adv. Mater., 19, 276 (2007). [DOI: https:/doi.org/10.1002/adma.200600845]
  2. D. R. Lee, B. S. Kim, C. W. Lee, Y. Im, S. H. Hwang, and J. Y. Lee, ACS Appl. Mater. Interfaces, 7, 9625 (2015). [DOI: https:/doi.org/10.1021/acsami.5b01220]
  3. X. Dai, Z. Zhang, Y. Niu, H. L. Chen, J. Wang, and X. Peng, Nature, 515, 96 (2014). [DOI: https:/doi.org/10.1038/nature13829]
  4. Y. Yang, Y. Zheng, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photonics, 9, 259 (2015). https://doi.org/10.1038/nphoton.2015.36
  5. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and Vladimir Bulovic, Nat. Photonics, 7, 13 (2013). [DOI: https:/doi.org/10.1038/nphoton.2012.328]
  6. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, and N. G. Park, Nanoscale, 3, 4088 (2011). [DOI: https:/doi.org/10.1039/c1nr10867k]
  7. M. A. Green, A. H. Baillie and H. J. Snaith, Nat. Photonics, 8, 506 (2014). [DOI: https:/doi.org/10.1038/nphoton.2014.134]
  8. Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, A. Sadhanala, F. Hanusch, T. Bein, H. J. Snaith, and R. H. Friend, Nat. Nanotechnol., 9, 687 (2014). [DOI: https:/doi.org/10.1038/nnano.2014.149]
  9. H. Cho, S. H. Jeong, M. H. Park, Y. H. Kim, C. Wolf, C. L. Lee, J. H. Heo, N. S. Myoung, S. H. Im, R. H. Friend, S. H. Im, and T. W. Lee, Science, 350, I222 (2015). [DOI: https:/doi.org/10.1126/science.aad1818]
  10. F. Brivio, A. B. Walker, and A. Walsh, APL Mater., 1, 042111 (2013). [DOI: https:/doi.org/10.1063/1.4824147]
  11. A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin, and M. Gratzel, Chem. Mater., 26, 6160 (2014). https://doi.org/10.1021/cm502468k
  12. M. Kulbak, S. Gupta, N. Kedem, T. Bendikov, G. Hodes, and D. Cahen, J. Phys. Chem. Lett., 7, 167 (2016). [DOI: https:/doi.org/10.1021/acs.jpclett.5b02597]
  13. H. S. Kim, S. H. Im, and N. G. Park, J. Phys. Chem. C, 118, 5615 (2014). [DOI: https:/doi.org/10.1021/jp409025w]
  14. S. Bai and F. Gao, J. Mater. Chem. C, 4, 3898 (2016). [DOI: https:/doi.org/10.1039/C5TC04116C]
  15. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, R. Caputo, A. Walsh, and M. V. Kovalenko, Nano. Lett., 15, 3692 (2015). [DOI: https:/doi.org/10.1021/nl5048779]
  16. J. Song, J. Li, X. Li, L. Xu, Y. Dong, and H. Zeng, Adv Mater., 27, 7162 (2015). [DOI: https:/doi.org/10.1002/adma.201502567]
  17. Y. H. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, and E. H. Sargent, ACS Appl. Mater. Interfaces, 7, 25007 (2015). [DOI: https:/doi.org/10.1021/acsami.5b09084]
  18. J. D. Roo, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. V. Driessche, M. V. Kovalenko, and Z. Hens, ACS Nano, 10, 2071 (2016). [DOI: https:/doi.org/10.1021/acsnano.5b06295]
  19. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello, and M.V. Kovalenko, Nano Lett., 16, 1869 (2016). [DOI: https:/doi.org/10.1021/acs.nanolett.5b04981]
  20. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, and M. V. Kovalenko, Nano Lett., 15, 5635 (2015). [DOI: https:/doi.org/10.1021/acs.nanolett.5b02404]
  21. S. Sun, D. Yuan, Y. Xu, A. Wang, and Z. Deng, ACS Nano, 26, 3648 (2016). [DOI: https:/doi.org/10.1021/acsnano.5b08193]
  22. X. Li, Y. Wu, S. Zhang, B. Cai, J. Song, and H. Zeng, Adv. Funct. Mater., 26, 2435 (2016). [DOI: https:/doi.org/10.1002/adfm.201600109]
  23. X. Zhang, Y. Zhang, L. Yan, C. Ji, H. Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, T. Cui, J. Zhaobd, and W. W. Yu, Nano Lett., 16, 1415 (2016). [DOI: https:/doi.org/10.1021/acs.nanolett.5b04959]
  24. Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R. M. Chen, T. Y. Luh, J. Shi, and C. W. Tang, Appl. Phys. Lett., 74, 865 (1999). [DOI: https:/doi.org/10.1063/1.123392]
  25. X. Zhang, Y. Zhang, Wu, Y. Wang, P. Wang, T. Zhang, Y. Wang, and J. Zhao, J. Mater. Chem. A, 3, 8501 (2015). [DOI: https:/doi.org/10.1039/C5TA00092K]
  26. Z. Zhang, K. Ye, J. Zhang, H. Zhang, and Y. Wang, Dalton Trans., 44, 14436 (2015). [DOI: https:/doi.org/10.1039/C5DT02093J]
  27. G. Li, F.W.R. Rivarola, N.J.L.K. Davis, S. Bai, T. C. Jellicoe, S. Hou, F. Gao, R. H. Friend, N. C. Greenham, R. H. Friend, and Z. K. Tan, Adv. Mater., 28, 3528 (2016). [DOI: https:/doi.org/10.1002/adma.201600064]
  28. J. Song, L. Xu, J. Li, J. Xue, Y. Dong, X. Li, and H. Zeng, Adv. Mater. 28, 4861 (2016). [DOI: https:/doi.org/10.1002/adma.201600225]