• Title/Summary/Keyword: Light water reactors

Search Result 111, Processing Time 0.024 seconds

A study of flow oscillations in a upright heated pipe (직립전열관에서의 유체진동에 관한 연구)

  • 박진길;진강규;오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.85-99
    • /
    • 1984
  • The stability of the two-phase flow in a heated channel is of great importance in the design and operation of the boilers and light water nuclear reactors, because it can cause flow oscillations and lead to a violation of thermal limits with resultant overheating of the channels and cladding. This paper presents a systematic evaluation to the variation effects of the basic four (4) dimensionless parameters in a homogeneous equilibrium model. The flow stability is examined on the ground of static characteristic curves. The complicated transfer function of flow dynamics which gives consideration to the transport lag of density wave is derived, and the transient flow stability is analysed by applying the Nyquist stability criterion in control engineering. The analysis results summed up as follows 1. The coolant flow becomes stable in large friction number and specific flow, while it is unstabale in small friction number and flow. 2. Large phase-change number and Froude number destabilize the two-phase flow, but small numbers stabilize it. The effect to variation of phase-change number is more dominant compared with Froude number. 3. The dynamic analysis is required to hold the sufficient safety of heated channels since only static results does not keep it. The special attention could be payed in the design and operation of heat engines, because the unstaable region exists within the stable boundary at small and middle phase-change number and Froude number.

  • PDF

Degradation Efficiencies of Gas Phase Hydrocarbons for Photocatalysis Reactor With TiO2Thin Film (TiO2광촉매 반응기의 기체상 탄화수소의 분해효율)

  • 이진홍;박종숙;김진석;오상협;김동현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.3
    • /
    • pp.223-230
    • /
    • 2002
  • Titania photocatalytic oxidation reactors were studied to investigate degradation efficiencies of hydrocarbons. In general, it is well known phenomena that thin layered titania oxidizes most of hydrocarbons to carbon dioxide and water under UV light. In this study, degradation efficiencies were measured due to changes in reactor structures, UV sources, the number of titania coatings, and various hydrocarbon chemicals. It was proven that gas degradation efficiencies are related to such factors as UV transmittance of coating substance, collision area of surface, and gas flow rate. For packing type annular reactor, about 98% degradation efficiency was achieved for achieved for propylene of 500 ppm level at a flow rate of 100 ml/min. Several gases were also tested for double-coated titania thin film under the condition of continuous flow of 100 ml/min and 365 nm UV source. It was shown that degradation efficiencies were decreasing in the order: $C_3$ $H_{6}$, n-C$_4$ $H_{10}$, $C_2$ $H_4$, $C_2$ $H_2$, $C_{6}$ $H_{6}$ and $C_2$ $H_{6}$./. 6/./.

Quantitative Estimation of Radiation Damage in Reactor Pressure Vessel Steels by Using Multiscale Modeling (멀티스케일 모델링을 이용한 압력용기강의 조사손상 정량예측)

  • Lee, Gyeong-Geun;Kwon, Junhyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.113-121
    • /
    • 2014
  • In this work, an integrated model including molecular dynamics and chemical rate theory was implemented to calculate the growth of point defect clusters(PDC) and copper-rich precipitates(CRP) which could change the mechanical properties of reactor pressure vessel(RPV) steels in a nuclear power plant. A number of time-dependent differential equations were established and numerically integrated to estimate the evolution of irradiation defects. The calculation showed that the concentration of the vacancies was higher than that of the self-interstitial atoms. The higher concentration of vacancies induced a formation of the CRPs in the later stage. The size of the CRPs was used to estimate the mechanical property changes in RPV steels, as is the same case with the PDCs. The calculation results were compared with the measured values of yield strength change and Charpy V-notch transition temperature shift, which were obtained from the surveillance test data of Korean light water reactors(LWRs). The estimated values were in fair agreement with the experimental results in spite of the uncertainty of the modeling parameters.

GLOBAL DEPLOYMENT OF MITSUBISHI APWR, A GEN-III+ SOLUTION TO WORLD-WIDE NUCLEAR RENAISSANCE

  • Suzuki, Shigemitsu;Ogata, Yoshiki;Nishihara, Yukio;Fujita, Shiro
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.989-994
    • /
    • 2009
  • We at Mitsubishi have lined up Gen-III+ solutions for a wide variety of global customers: ATMEA1 of the 1100MWe class, and an APWR with the largest capacity of 1700MWe. In this paper, we would like to introduce the APWR. With an increased requirement for nuclear power generation as an effective countermeasure against global warming, we have established the APWR plant, a large-capacity Mitsubishi standard reactor combining our accumulated experience and technology as an integrated PWR plant supplier. The APWR plant has achieved high reliability, safety and enhanced economy based on a technology that has been developed with the support of the government and utilities through improvement and standardization programs of light water reactors. Currently, Tsuruga Units 3 and 4, the first two APWRs, are undergoing licensing, while we are making efforts to obtain the standard design certification (DC) of US-APWR and preparing for the European Utility Requirements (EUR) compliance assessment of EU-APWR. Mitsubishi Heavy Industries, Ltd. (MHI) positions the APWR as a core technology that will contribute to the prevention of global warming and meet worldwide requirements.

An Experimental Study on the Transient Interaction Between High Temperature Thermite Melt and Concrete

  • Nho, Ki-Man;Kim, Jong-Hwan;Kim, Sang-Baik;Shin, Ki-Yeol;Mo Chung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.336-347
    • /
    • 1997
  • During postulated severe accidents in Light water Reactors, molten corium which was ejected from the reactor vessel bottom, may erode the concrete basemat of the containment and there by threaten the containment integrity. This study experimentally examines the molten core-concrete interaction (MCC) using 20kg of thermite melt (Fe + $Al_2$O$_3$) and the concrete, used in Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 & 4) in Korea. The measured data are the downward heat fluxes, concrete erosion rate, gases and particle generation rates during MCCI. Transient results ore compared with those of TURCIT experiment conducted by SNL in USA. The peak downward heat flux to the concrete was measured to be about 2.1㎿/$m^2$. The initial concrete erosion rate was 175cm per hour, decreasing to 30cm per hour. It was shown from the post-test that the erosion was progressed downward up to 18mm in the concrete slug.

  • PDF

Feasibility of combinational burnable poison pins for 24-month cycle PWR reload core

  • Dandi, Aiman;Lee, MinJae;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.238-247
    • /
    • 2020
  • The Burnable Poison (BP) is very important for all Light Water Reactors in order to hold-down the initial excess reactivity and to control power peaking. The use of BP is even more essential as the excess reactivity increases significantly with a longer operation cycle. In this paper a feasibility study was conducted in order to investigate the benefits of a new combinational BP concept designed for 24-month cycle PWR core. The reference designs in this study are based on the two Korean fuel assemblies; 17 × 17 Westinghouse (WH) design and 16 × 16 Combustion Engineering (CE) design. A modification was done on these two designs to extend their cycle length from 18 months into 24 months. DeCART2D-MASTER code system was used to perform assembly and core calculations for both designs. A preliminary test was conducted in order to choose the best BP suitable for 24-month as a representative for single BP concept. The comparison between the results of two concepts (combinational BP concept and single BP concept) showed that the combinational BP concept can replace the single BP concept with better performance on holding down the initial excess reactivity without violating the design limitations.

Distribution Analysis of TRISO-Coated Particles in Fully Ceramic Microencapsulated Fuel Composites

  • Lee, Hyeon-Geun;Kim, Daejong;Lee, Seung Jae;Park, Ji Yeon;Kim, Weon-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.400-405
    • /
    • 2018
  • FCM nuclear fuel, a concept proposed as an accident tolerant fuel in light water reactors, consists of TRISO fuel particles embedded in a SiC matrix. The uniform dispersion of internal TRISO fuel particles in the FCM fuel is very important for improving the fuel efficiency. In this study, FCM sintered pellets with various volume ratios of TRISO-coated particles were prepared by hot press sintering. The distribution of TRISO-coated particles was quantitatively analyzed using X-ray ${\mu}CT$ and expressed as a dispersion uniformity index. TRISO-coated particles were most uniformly dispersed in the FCM pellets prepared using only overcoated TRISO particles without mixing of additional SiC matrix powder. FCM pellets with uniformly dispersed TRISO particle volume fraction of up to 50% were prepared using overcoated TRISO particles with varying thickness.

ENHANCEMENT OF DRYOUT HEAT FLUX IN A DEBRIS BED BY FORCED COOLANT FLOW FROM BELOW

  • Bang, Kwang-Hyun;Kim, Jong-Myung
    • Nuclear Engineering and Technology
    • /
    • v.42 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • In the design of advanced light water reactors (ALWRs) and in the safety assessment of currently operating nuclear power plants, it is necessary to evaluate the possibility of experiencing a degraded core accident and to develop innovative safety technologies in order to assure long-term debris cooling. The objective of this experimental study is to investigate the enhancement factors of dryout heat flux in debris beds by coolant injection from below. The experimental facility consists mainly of an induction heater, a double-wall quartz-tube test section containing a steel-particle bed and coolant injection and recovery condensing loop. A fairly uniform heating of the particle bed was achieved in the radial direction and the axial variation was within 20%. This paper reports the experimental data for 3.2 mm and 4.8 mm particle beds with a 300 mm bed height. The dryout heat density data were obtained for both the top-flooding and the forced coolant injection from below with an injection mass flux of up to $1.5\;kg/m^2s$. The dryout heat density increased as the rate of coolant injection increased. At a coolant injection mass flux of $1.0\;kg/m^2s$, the dryout heat density was ${\sim}6.5\;MW/m^3$ for the 4.8 mm particle bed and ${\sim}5.6\;MW/m^3$ for the 3.2 mm particle bed. The enhancement factors of the dryout heat density were 1.6-1.8.

B$\Phi$rrensen Model Computation for Neutronic Benchmark Problems (Neutronic Benchmark 문제에 대한 B$\Phi$rrensen 모델응용)

  • Bub Dong Chung;Chang Hyo Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1981
  • B$\Phi$rrensen proposed a coarse mesh, three-dimensional one-and-half group diffusion scheme for computing the gross power distribution in light water reactors as an alternative to the conventional fine mesh finite difference approach in dealing with three dimensional problems, which require a prohibitively long computing time. The method reported takes extremely small execution time. However, its computational accuracy has not been investigated yet. The B$\Phi$rrensen method is revised in this work and both efficiency and accuracy are examined by applying it to IAEA benchmark problem and RIS$\Phi$ benchmark problem. It is found that two modifications on core-reflector boundary conditions and B$\Phi$rrensen's model constants may improve computational accuracy of power distribution calculation.

  • PDF

A SCENARIO STUDY ON MIXING STRATEGIES OF FAST REACTOR WITH LOW AND HIGH CONVERSION RATIOS

  • Jeong, Chang Joon;Jo, Chang Keun;Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.367-376
    • /
    • 2013
  • This study investigated mixing scenarios of the low and high conversion ratios (CRs) of fast reactors (FRs). The fuel cycle was modeled so as to minimize the spent fuel (SF) or transuranics (TRU) inventories. The scenarios were modeled for a single low CR of 0.61 and a high CR of 1.0. The study also investigated the mixing scenario of low-high CR and/or high-low CR. The SF and TRU inventories, associated with different scenarios, were compared to those of the light water reactor (LWR) once-through (OT) case. Also, the important isotope concentration and long-term heat (LTH) load were calculated and compared to those of the OT cycle. As a result, it is known that the deployment of FRs of low CR burns more TRU and results in a reduction of the out-of-pile TRU inventory and LTH with low deployment capacity. This study shows that the mixing strategy of FRs of low and high CR can reduce the SF and TRU inventories with lower deployment capacity as compared with a single deployment of FRs of high CR.