• Title/Summary/Keyword: Light engine

Search Result 333, Processing Time 0.022 seconds

150 W LED Streetlight Optimal Design Using 21 W LED Engine (21 W LED 엔진을 이용한 150 W급 가로등의 최적설계)

  • Shin, Wang-Soo;Lee, Seung-Min;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • In this paper, the IES file was measured by applying a secondary optical lens to a 21 W LED engine, and the lighting calculation software RELUX was used to perform simulations with the data file of this measurement. For two-lane (two way) concrete paved roads, six LED engine are applied to each streetlight and simulation results show that Uo (uniformity) 0.56, UI (longitudinal uniformity) 0.86 and TI (threshold iIncrement) 9% which satisfies the required standards. RELUX was also used to LED streetlights by designing them in three dimensions, that is ${\pm}25%$ of the arm length of 2.8 m standardized by the road lighting standards of the Korea Expressway Corporation. Comparative analysis was carried out on adjustments were made in increments of 0.1 m that Uo, UI, and TI values in the range of arm lengths from 2.1 m~3.5 m. For the arm length range of 2.1 m~2.4 m, Uo was high, whereas UI was low. Therefore, we present the optimal light distribution values designed for an arm length of 2.5 m.

Acetone PLIF for Fuel Distribution Measurements in Liquid Phase LPG Injection Engine (LPG 액상분사 엔진에서 아세톤 PLIF를 이용한 연료분포 측정기법 연구)

  • 오승묵;박승재;허환일;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.74-82
    • /
    • 2004
  • Planar laser-induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Acetone PLIF is chosen because fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone PLIF is applied to measure quantitative air excess ratio distribution in an engine fueled with LPG. Acetone is excited by KrF excimer laser (248nm) and its fluorescence image is acquired by ICCD camera with a cut-off filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile is suggested. Raw images are divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which is taken by a calibration process, are converted to air excess ratio distribution. This investigation shows instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

Examination on Combustion Quality Analysis of Residue Heavy Fuel Oil and Improvement of Combustion Quality Using Pre-injection (중질 잔사유의 연소성 분석과 보조 분사에 의한 연소성 향상에 관한 검토)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • Due to the development of the petroleum refining technology and continuously increased demand from markets, a quantity of gasoline and diesel oil produced from a restricted quantity of crude oil has been increasing, and residual fuel to be used at marine diesel engines has been gradually becoming low quality. As a result, it was recently reported that trouble oils which cause abnormal combustion such as knocking with extreme noise and misfire from internal combustion engines were increasing throughout the world. In this study, an author investigated ignitability and combustion quality by using combustion analyzer with constant volume(FCA, Fuel Combustion Analyzer) and middle speed diesel engine about MDO(Marine Diesel Oil), HFO(Heavy Fuel Oil), LCO(Light Cycle Oil) and Blend-HFO which was blended LCO of 1000 liters with HFO of 600 liters. Moreover, for betterment of ignitability and combustion quality of injected fuels, multi-injection experiment was carried out in the diesel engine using Blend-HFO. According to the results of FCA analysis, ignitability and combustion quality was bad in the order of MDO

Heat Exchangers for Gas Turbine Cycles and Thermal Management (롤스로이스 기술개발 동향)

  • Stieger, Rory
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.465-465
    • /
    • 2011
  • Rolls-Royce is a global company producing advanced power systems for use on land, at sea and in the air. In order to develop competitive products and services, Rolls-Royce invests in technology, infrastructure and capability with much of the research carried out in a global network of University Technology Centres, such as the UTC in Thermal management at Pusan National University. Heat exchangers and thermal management play a critical role in today's gas turbine engines, maintaining the fuel and oil temperatures within the correct operational range. Future products are likely to place an increased duty on the thermal management system and thus require advances in heat exchanger design, installation and manufacturing. Heat exchangers further have the potential to play a vital role in Advanced Cycle Gas Turbine products. The Intercooled and recuperated WR21 marine gas turbine engine recently entered service with the Royal Navy and is delivering very attractive fuel burn in service. The development of an advanced cycle aero-engine is a significantly greater challenge, requiring better understanding of compact and light weight heat exchanger surfaces, novel installations and ducting systems and may required novel manufacturing techniques to achieve the volume, weight and cost necessary to realise a viable advanced cycle gas turbine aero-engine.

  • PDF

Acoustic Study of light weight insulation system on Dash using SEA technique (SEA 기법을 이용한 저중량 대시판넬 흡,차음재 성능에 대한 연구)

  • Lim, Hyo-Suk;Park, Kwang-Seo;Kim, Young-Ho;Kim, In-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper Statistical Energy Analysis has been considered to predict high frequency air borne interior noise. Dash panel Insulation is major part to reduce engine excitation noise. Transmission loss and absorption coefficient are considered to predict dash insulation performance. Transmission lose is derived from coupling loss factor and absorption coefficient is derived from internal damping loss factor. Material Biot properties were used to calculate each loss factors. Insulation geometry thickness distribution was hard to measure, so FeGate software was used to calculate thickness map from CAD drawing. Each predicted transmission losses between conventional insulation and light weight insulation were compared with SEA. Transmission loss measurement was performed to validate each prediction result, and it showed good correlation between prediction and measurement. Finally interior noise prediction was performed and result showed light weight insulation system can reduce 40% weight to keep similar performance with conventional insulation system, even though light weigh insulation system has lower sound transmission loss and higher absorption coefficient than conventional system.

  • PDF

A Study of the Opacity Correlation Factor between the Filtration Type and Light Extinction Type Diesel Smoke Meters (여지반사식과 광투과식 매연측정기의 매연도 상관계수에 관한 연구)

  • Kim, Young-Ju;Park, Kyoung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.146-152
    • /
    • 2007
  • Recently, The air pollution problems become hot issues as the production of the diesel automotive increases. The ministry of environment has enforced a precise inspection law to decrease the vehicle emission. In this circumstances, the smoke measurement is somewhat complicated by the use of the different type smoke meters. Although the paper filtration type opacimeter has been used for measuring smoke widely but currently the light extinction type is being used for precise inspection law. These two type opacimeters are different in their measuring principles on each other. So, for the time being the regulation standards can be confused by these two type opacimeters. In this article, The correlation factor between these two type opacimeters is studied by using engine dynamometer and vehicle test. The result of the dynamometer test shows the light extinction type is more sensitive than the filtration type by 1.47 times. But the relation factor by the vehicle test achieved 1.37 value, which is lower than that of the dynamometer test. In the future study the more precise research is needed to estimate the relation factor on vehicle test.

HELIUM3D: A Laser-scanning Head-tracked Autostereoscopic Display

  • Brar, Rajwinder Singh;Surman, Phil;Sexton, Ian;Hopf, Klaus
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.100-108
    • /
    • 2010
  • A multi-user autostereoscopic display based on laser scanning is described in this paper. It does not require the wearing of special glasses; it can provide 3D to several viewers who have a large degree of freedom of movement; and it requires the display of only a minimum amount of information. The display operates by providing regions in the viewing field, referred to as "exit pupils," which follow the positions of the viewers' eyes under the control of a multi-user head tracker. The display incorporates an RGB laser illumination source that illuminates a light engine. The light directions are controlled by a spatial light modulator, and a front screen assembly incorporates a novel Gabor superlens. Its operating principle is explained in this paper, as is the construction of three iterations of the display. Finally, a method of developing the display into one that is suitable for television applications is described.

The evaluation of diesel emission reduction characteristics by DOC in light-duty vehicle (소형디젤산화촉매의 배출가스 성능평가)

  • 엄명도;류정호;임철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.34-42
    • /
    • 1999
  • In late 1997, the portion of registered light-duty diesel vehicle was 25.3% and its emission rate was 17.1% in Korea. Especially, diesel particulate matters(DPM) and NOx are hazardous air pollutants to human health and environment in urban area. The reduction technologies of exhaust emissions from diesel engines are improvement of engine combustion, fuel quality and development of diesel exhaust after treatment , In this study , a light-duty diesel oxidation catalyst(DOC) that is one of the diesel exhaust after treatment was made for performance evaluation and the emission characteristics were tested on CVS-75 mode. And the analysis of the particle size distribution with scanning mobility particle 100, 67.6% and 66.7, 10.0% for Pt and Pt-V catalyst .And for Pt catalyst, the PM increased 7.8% because of increasing sulfate but Pt-V catalyst reduced the PM to 23.0% . Test results of particle size distribution showed that peak values of number and mass densities are respectively 100∼200nm their distribution trend independent of vehicle speed.

  • PDF

CHANGE OF CATALYST TEMPERATURE WITH UEGI TECHNOLOGY DURING COLD START

  • CHO Y.-S.;KIM D.-S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.445-451
    • /
    • 2005
  • Most of the pollutants from passenger cars are emitted during the cold-transient phase of the FTP-75 test. In order to reduce the exhaust emissions during the cold-transient period, it is essential to warm up the catalyst as fast as possible after the engine starts, and the Unburned Exhaust Gas Ignition (UEGI) technology was developed through our previous studies to help close-coupled catalytic converters (CCC) reach the light-off temperature within a few seconds after cold-start. The UEGI system operates by igniting the unburned exhaust mixture by glow plugs installed upstream of the catalyst. The flame generates a high amount of heat, and if the heat is concentrated on a specific area of monolith surface, then thermal crack or failure of the monolith could occur. Therefore, it is very important to monitor the temperature distribution in the CCC during the UEGI operation, so the local temperatures in the monolith were measured using thermocouples. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches the light-off temperature earlier than the baseline case. Under the conditions tested, the light-off time of the baseline case was 62 seconds, compared with 33 seconds for the UEGI case. The peak temperature is well under the thermal melting condition, and temperature distribution is not so severe as to consider thermal stress. It is noted that the UEGI technology is an effective method to warm up the catalyst with a small amount of thermal stress during the cold start period.

Real-Time Terrain Rendering Framework for GIS Applications

  • Kang, Dong-Soo;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • Real-time 3D visualization of terrain data is one of the important issues in GIS(Geographic Information System) field. We present a real-time terrain rendering engine that can use several types of GIS data source such as DEM(Digital Elevation Map), DTED(Digital Terrain Elevation Data) and LIDAR(Light Detection And Ranging). Our rendering engine is a quadtree-based terrain rendering framework with several acceleration modules. This can generate an ocular and binocular image. Also it can be applied to the flight simulation, walk-through simulation and a variety of GIS applications.

  • PDF