• Title/Summary/Keyword: Light color

Search Result 2,990, Processing Time 0.038 seconds

The Egg Development of Korean Slender Gudgeon, Squalidus gracilis majimae (Cypriniforms: Cyprinidae) (한국산 긴몰개 (Squalidus gracilis majime, Cyprinidae)의 난발생)

  • Park, Kyung-Seo;Hong, Young-Pyo;Moon, Woon-Ki;Choi, Shin-Suk;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.73-82
    • /
    • 2005
  • This study was conducted, based on the field survey and laboratory observations, to elucidate egg developmental processes and their characteristics of the Korean slender gudgeon, Squalidus gracilis majimae. For the experiments, the mature adults were collected at the Woongcheon-Cheon Stream and Boreung Reservoir located in Boreung City, Chungnam Province and eggs were obtained from the natural spawning area. Morphological characteristics of the egg and embryonic development were summarized as follows: The shape of the fertilized egg was spherical, adhesive and transparent. The fertilized egg was 2.9${\pm}$0.3 mm (n = 30) in mean diameter under water temperature of $26{\pm}1.5^{\circ}C$, light white in color and had no oil droplets. After 20 minutes from the time of fertilization, a blastodisc was formed and divided into two cells at 48 minutes after fertilization. The blastular stage occurred at 5 hours 40 minutes after fertilization and the gastrular stage was detected at 8 hours 41 minutes after fertilization. The beginning of embryo formation was observed at 12 hours 58 minutes after fertilization and optic vesicles and 9 somites were discovered at 17 hours 05 minutes after fertilization. Differentiation of brains and embryo wiggling were observed at 37 hours 27 minutes after fertilization. Heart beating and the formation of melanophores in optic vesicles were detected at 44 hours 46 minutes after fertilization. The formation of pectoral fins and melanophores in the body were discovered at 50 hours 36 minutes after fertilization. Hatching occurred at 57 hours 49 minutes after fertilization. The newly hatched larvae were 3.3${\pm}$0.2 mm (n = 120) in total length. We believe that these results may contribute the species and population conservations under the situation of accelerated water pollution and the decreases of its diversity.

A Study on the Change of Materials and Fabrication Techniques of Stone Figures in Royal Tombs of the Joseon Period - Focusing on Shindobi, Pyo-Seok, and Sang-Seok - (조선시대 왕릉 석물의 재료와 제작 방법 변화에 관한 연구 - 신도비와 표석, 상석을 중심으로 -)

  • Cha, Moonsung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.56-77
    • /
    • 2019
  • Bi-Seok is a treasure trove of funeral rites and an important cultural asset that can shed light on the historical and social history of calligraphy, but research of the topic is still insignificant. In particular, research on the production method of Bi-Seok remains an unproven field. The production of Bi-Seok can be roughly divided into ma-jeong (refining stone), sculpture, and the Buk-chil (process of engraving letters) process. This article reveals some facts: First, performing ma-jeong to the Sang-Seok, Honyu-Seok, Bi-seok, which are known to be God's things. This process is needed because of the change in the perception of the Honyu-Seok due to the settlement and propagation of Confucian ceremonial rituals in the times of hardship in 1592 and 1636. As the crafting process of ma-jeong did not remain concrete, it was only possible to examine the manufacturing process of Bi-Seok through its materials and tools. Second, the rapid proliferation of Oh-Seok and Sa-jeo-chwi-yong (purchase of things made by private citizens) in the Yeongjo era has great importance in social and cultural history. When the Gang-Hwa-Seok of the commodity were exhausted, the Oh-Seok that was used by Sadebu (upper civil class) were used in the tomb of Jangneung, which made Oh-Seok popular among people. In particular, the use of Oh-Seok and the Ma-Jeong process could minimize chemical and physical damage. Third, the writing method of the Bi-seok is Buk-chil. After Buk-Chil of Song Si-Yeol was used on King Hyojong's tomb, the Buk-Chil process ( printing the letters on the back of the stone and rubbing them to make letters) became the most popular method in Korea and among other East Asian countries, and the fact that it was institutionalized to this scale was quite impressive. Buk-Chil became more sophisticated by using red ink rather than black ink due to the black color that results from Oh-Seok. Fourth, the writing method changes in the late Joseon Dynasty. Until the time of Yeongjo's regime, when inscribing, the depth of the angle was based on the thickness of the stroke, thus representing the shade. This technique, of course, did not occur at every Pyo-Seok or Shindobi, but was maintained by outstanding artisans belonging to government agencies. Therefore, in order to manufacture Bi-Seok, Suk-seok, YeonJeong, Ma-jeong, Jeong-Gan, ChodoSeoIp, Jung-Cho, Ip-gak, Gyo-Jeong, and Jang-Hwang, a process was needed to make one final product. Although all of these methods serve the same purpose of paying respects and propagandizing the great work of deceased persons, through this analysis, it was possible to see the whole process of Pyo-Seok based upon the division of techniques and the collaboration of the craftsmen.

Effect of Torrefaction Condition on The Chemical Composition and Fuel Characteristics of Larch wood (낙엽송재의 화학적 조성 및 연료적 특성에 대한 반탄화 조건의 영향)

  • Kim, Sang Tae;Lee, Jae-Jung;Park, Dae-Hak;Yang, In;Han, Gyu-Seong;Ahn, Byoung Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.122-134
    • /
    • 2015
  • This study was conducted to investigate the potential of torrefied larch wood as a raw material of pellets. First of all, larch chip was torrefied at the temperatures of 230, 250 and $270^{\circ}C$ for 30, 50 and 70 min. Secondly, moisture content, moisture absorption, higher heating value and ash content of the torrefied chip were measured to examine the effects of torrefaction conditions on the fuel characteristics of larch. Thirdly, surfaces of the torrefied chip were observed by light microscope (LM), field emission scanning microscope (FE-SEM) and SEM-energy dispersive spectroscopy (EDXS). With the increases of torrefied temperature and time, contents of lignin increased and those of hemicellulose reduced. Moisture content of torrefied larch chip was greatly lower than that of non-torrefied chip. Moisture absorption of the torrefied chip decreased as torrefaction temperature increased. As torrefaction temperature increased, higher heating value and ash content of larch chip increased. However, durability of torrefied-larch pellets was remarkably lower comparing to non-torrefied-larch pellets. When surface of larch chip was observed by LM and FE-SEM, surface color and cell wall of the chip was getting darker and more collapsed with the increases of torrefaction conditions. Through the analysis of SEM-EDXS, distribution and quantity of lignin existing on the surface of larch chip increased with the increases of torrefied conditions. In conclusion, $270^{\circ}C$/50 min might be an optimal condition for the torrefaction of larch with the aspect of fuel characteristics, but torrefaction condition of $230^{\circ}C$/30 min should be considered according to the durability of torrefied-larch pellets.

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Development of 'Damogy' Cultivar of Gomchwi with Disease Resistant, High Quality, and Yield (고품질 내병 다수성 곰취 신품종 '다목이' 육성)

  • Suh, Jong Taek;Yoo, Dong Lim;Kim, Ki Deog;Lee, Jong Nam;Kwon, Young Seok;Kim, Won Bae
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.475-480
    • /
    • 2017
  • A new Gomchwi cultivar 'Damogy ' was bred by crossing between Gomchwi (Ligularia fischeri (Ledeb.) Turcz.) and Handaeri-gomchwi (Ligularia fischeri var. spiciformis Nakai). The selection and investigation of growth and yield characteristics were conducted from 2006 to 2011 in field and greenhouse of Highland Agriculture Research Institute, NICS, Rural Development Administration, Korea. On a newly developed cultivar 'Damogy', Color of petiole ear was purple, petiole trichome was exist, light of leaf back was not exist, and density of leaf vein was degree 4. Plant height, leaf length, leaf width and petiole length were 45.9, 16.9, 21.1 and 29.0 cm, respectively in the $3^{rd}$ year in growth characteristics. Plant size was also higher than that of Gondalbi. Bolting and flowering time were Aug. $23^{th}$ and Sept. $10^{th}$, respectively. In contrast, Gondalbi showed quite earlier bolting time more than 38 days compared with 'Damogy' and consequently earlier flowering time more than 26 day. 'Damogy' showed similar leaf number (129) per plant compared to 'Gondalbi' (130). Furthermore, yield was higher 'Damogy' (1,889 g/plant) than in 'Gondalbi' (798 g/plant). 'Damogy' showed higher leaf thickness (0.71 mm) than 'Gonalbi' (0.46 mm), and consequently showed more hardness in leaf characteristics ($28.3kg/cm^2$) compared with 'Gondalbi' ($23.0kg/cm^2$). 'Damogy' showed higher resistance in the susceptibility of powdery mildew disease compared to 'Gondalbi'. 'Damogy' variety was registered plant variety protection right as a No. 89 on December 2015.

A New Early-Heading, High-Yielding Triticale Cultivar for Forage, 'Shinseong' (숙기가 빠르고 종실 수량이 많은 트리티케일 신품종 '신성')

  • Han, Ouk-Kyu;Park, Hyung-Ho;Park, Tae-Il;Oh, Young-Jin;Song, Tae-Hwa;Kim, Dea-Wook;Chae, Hyun-Seok;Hong, Ki-Heung;Bae, Jeong-Suk;Kim, Ki-Soo;Yun, Geon-Sig;Lee, Seong-Tae;Ku, Ja-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong;Kim, Byung-Joo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.142-149
    • /
    • 2016
  • 'Shinseong', a winter forage triticale cultivar (X Triticosecale Wittmack), was developed at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2015. The cultivar 'Shinseong' was selected from the cross RONDO/2$^*$ERIZO_11//KISSA_4/3/ASNO/ARDI_3//ERIZO_7 by CIMMYT (Mexico) in 1998. Subsequent generations were handled in pedigree selection programs at Mexico from 1999 to 2004, and a line 'CTSS98Y00019S-0MXI-B-3-3-5' was selected for earliness and good agronomic characteristics. After preliminary and advance yield testing in Korea for 3 years, the line was designated 'Iksan47'. The line was subsequently evaluated for earliness and forage yield in seven locations, Jeju, Iksan, Cheongwon, Yesan, Gangjin, Daegu, and Jinju from 2013 to 2015 and was finally named 'Shinseong'. Cultivar 'Shinseong' has the characteristics of light green leaves, yellow culm and spike, and a medium grain of brown color. The heading date of cultivar 'Shinseong' was April 24 which was 3 days earlier than that of check cultivar 'Shinyoung'. The tolerance or resistance to lodging, wet injury, powdery mildew, and leaf rust of 'Shinseong' were similar to those of the check cultivar. The average forage dry matter yield of cultivar 'Shinseong' at milk-ripe stages was $15MT\;ha^{-1}$, which was 3% lower than that ($15.5MT\;ha^{-1}$) of the check cultivar 'Shinyoung'. The silage quality of 'Shinseong' (6.7%) was higher than that of the check cultivar 'Shinyoung' (5.9%) in crude protein content, while was similar to the check cultivar 'Shinyoung' in acid detergent fiber (34.6%), neutral detergent fiber (58.6%), and total digestible nutrients (61.6%). It showed grain yield of $7.2MT\;ha^{-1}$ which was 25% higher than that of the check cultivar 'Shinyoung' ($5.8MT\;ha^{-1}$). This cultivar is recommended for fall sowing forage crops in areas in which average daily minimum mean temperatures in January are higher than $-10^{\circ}C$.

A New Purple Sweetpotato Cultivar for Table Use 'Yeonjami' (식용 자색고구마 신품종 '연자미')

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Kwang-Ho;Bang, Jin-Ki;Song, Yeon-Sang;Shim, Hyeong-Kwon;Han, Seon-Kyeong;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.679-683
    • /
    • 2010
  • 'Yeonjami' is a new sweetpotato variety developed for table use by Bioenergy Crop Research Center, National Institute of Crop Science (NICS), RDA in 2008. This variety was selected from the cross between 'Ayamurasakki' and 'Poly Cross' in 2000, and seedling and line selections were practiced from 2001 to 2003. Preliminary and advanced yield trials were carried out from 2004 to 2005. The regional yield trials were conducted at six locations from 2006 to 2008. 'Yeonjami' has cordate leaf, green vine and petiole, long elliptic storage root, purple skin and light purple flesh color of storage root. The average yield of storage root was 25.9 ton/ha in the regional yield trials, which was 15% higher than that of 'Sinjami' variety. Number of storage roots over 50 gram per plant was 2.9, and the average weight of one storage root was 153 gram. This variety was partly-resistant to Fusarium wilt and nematode. In addition, steamed 'Yeonjami' has higher polyphenol contents as 139.6 mg/100 g and higher biological activities as, which may improve the bioactivity in human.

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

Material Characteristics and Provenance Interpretation of Jade(Amazonite) from the Sijeonri Site at Asan, Korea (아산 시전리 유적 출토 옥기(천하석)의 재료과학적 특성과 산지해석)

  • Lee, Chan Hee;Kim, Jae Cheol;Na, Geon Ju;Kim, Myung Jin
    • Korean Journal of Heritage: History & Science
    • /
    • v.39
    • /
    • pp.219-242
    • /
    • 2006
  • Quantitative analysis and provenance interpretation of the raw materials for the jade (amazonite) excavated from the Asan Sijeonri site were studied. Geology of the Sijeonri site composed mainly of Precambrian metasedimentary rocks and the alluvium ranges extensively. In the site, amazonite jade was excavated in the Bronze Age No. 4 circular-shaped resident site. The jade has a comma-shaped and shows light green color with so much cracks. The jade is silicate mineral of columnar habits that is shown white streak, and has fine cleavages with vitreous luster. As the analytical results, this jade was identified as a feldspar-group mineral gemologically called amazonite that is mineralogically microcline formed to intergrowth of albite and orthoclase. Internal textures of the amazonite present Na-end member of albite coexisting with K-end member of orthoclase that are replaced each other along the cleavages and twin planes with several ${\mu}m$ scales. Therefore, the amazonite is one mineral phase combined with albite and orthoclase by substitution of $Na_2O$ and $K_2O$, respectively. The Danyang are is an unique producing site of amazonite in South Korea, and Gongju Janggimyeon was known as microcline provenance to the utmost area from the Sijeonri site. In the marginal area of southern coast in Korean Peninsula, Bronze Age amazonite has been excavated in several sites, where original provenance of the raw amazonite is not identified. The Sijeonri site does not show any facilities of producing and processing traces for amazonite jade. Also, only one jade was collected in the Sijeonri site. Therefore, there is not possibility that the provenance of raw jade is the Sijeonri area. To explain original provenance of the amazonite jade, migration path, manufacturing process and archaeological interpretation are required.

Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds (지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례)

  • Lee, Byung Woo;Kim, Seung-Sep
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.177-186
    • /
    • 2021
  • For disaster management and mitigation of earthquakes in Korea Peninsula, active fault investigation has been conducted for the past 5 years. In particular, investigation of sediment-covered active faults integrates geomorphological analysis on airborne LiDAR data, surface geological survey, and geophysical exploration, and unearths subsurface active faults by trench survey. However, the fault traces revealed by trench surveys are only available for investigation during a limited time and restored to the previous condition. Thus, the geological data describing the fault trench sites remain as the qualitative data in terms of research articles and reports. To extend the limitations due to temporal nature of geological studies, we utilized a terrestrial LiDAR to produce 3D point clouds for the fault trench sites and restored them in a digital space. The terrestrial LiDAR scanning was conducted at two trench sites located near the Yangsan Fault and acquired amplitude and reflectance from the surveyed area as well as color information by combining photogrammetry with the LiDAR system. The scanned data were merged to form the 3D point clouds having the average geometric error of 0.003 m, which exhibited the sufficient accuracy to restore the details of the surveyed trench sites. However, we found more post-processing on the scanned data would be necessary because the amplitudes and reflectances of the point clouds varied depending on the scan positions and the colors of the trench surfaces were captured differently depending on the light exposures available at the time. Such point clouds are pretty large in size and visualized through a limited set of softwares, which limits data sharing among researchers. As an alternative, we suggested Potree, an open-source web-based platform, to visualize the point clouds of the trench sites. In this study, as a result, we identified that terrestrial LiDAR data can be practical to increase reproducibility of geological field studies and easily accessible by researchers and students in Earth Sciences.