• Title/Summary/Keyword: Life cycle cost

Search Result 1,050, Processing Time 0.029 seconds

Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources (전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석)

  • Kim, Heetae;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

An Analysis on Cost Factor Reduction of Life Cycle for High Speed Train(KTX-1) Based on the Maintenance Information (유지보수정보를 활용한 고속철도차량(KTX-1) 수명주기비용 요소절감 분석)

  • Kim, Jae-Moon;Kim, Yang-Su;Chang, Chin-Young;Lee, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2169-2170
    • /
    • 2011
  • This paper presents about the analysis on cost factor reduction using the life cycle cost model for motor block in the KTX-1. Until now, most life cycle cost of the system as a whole that has been studied. but in case of railway industry part, LCC studies are needed on the subsystem like a propulsion control system because subsystems are developed continuously localization. Therefore, In this paper presents cost breakdown structure for life cycle cost (LCC) estimation for localization development of propulsion control system (Motor Block) in high speed railway vehicle (KTX-1). Also to analysis LCC on motor block, it was analyzed physical breakdown structure (PBS) and preventive cost on propulsion control system in view of maintenance cost. Based on this, we describe life cycle cost on motor block of KTX-1.

  • PDF

Life Cycle Cost Analysis of Steel Bridges on Its Paint System during Safe Life Under (강교의 도장방식에 따른 안전수명간 생애주기비용분석)

  • Han, Sang-Chul;Kim, Eun-Kyum;Cho, Sun-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2002
  • Life Cycle Cost analysis technique is introduced to evaluate cost-effectiveness of two paint systems of steel bridges. The systems are a conventional paint system and a galvanized paint system. The all costs during safe lift such as initial cost repainting costs, disposal costs are considered for the lift cycle cost analysis. The NIST model is used and BridgeLCC 1.0 developed by the NST is utilized as the lift cycle cost analysis tool. It is concluded that, in spite of expensive initial cost, the durable paint system may be cost-effective compared with conventional paint system.

Life Cycle Cost Breakdown Structure Development of Buildings through Delphi Analysis

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Ryu, Han-Guk;Kim, Gwang-Hee;Kim, Tae-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.528-538
    • /
    • 2012
  • With domestic construction projects becoming bigger, more specialized and more advanced, the construction industry is striving to improve quality and quantity, and is diversifying functions and shapes. Nevertheless, the process of a construction project causes problems when we estimate construction price, because the cost breakdown structures are different in each step. The primary aim of this study was to estimate building life cycle cost using the Delphi method. The cost breakdown structure for life cycle cost was classified into planning, design, construction, maintenance and waste disposal, and each detailed classification was determined by estimating life cycle cost. Moreover, the developed cost breakdown structure is verified by consulting with experts to secure objectivity and validity.

An Economic Order Quantity Model under Random Life Cycle (불확실한 수명주기의 제품에서의 경제적 주문량 모형)

  • Yun, Won-Young;Moon, Il-Kyeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.1
    • /
    • pp.73-77
    • /
    • 1993
  • This paper considers an Economic Order Quantity Model under random life cycle. It is assumed that the life cycle of the product is unknown; a random variable. Three cost parameters are considered; ordering cost, inventory carrying cost and salvage cost. Expected total cost is the optimization criterion. We show that the optimal cycle length is unique and finite, and present a simple line search method to find an optimal cycle length.

  • PDF

A Study on the Economic Life Cycle of Training Airplane in 'H' University ('H'대학교 훈련용 항공기의 경제적 수명주기에 관한 연구)

  • Chang, Jo-Won;Choi, Se-Jong;Eun, Hee-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.10 no.1
    • /
    • pp.57-68
    • /
    • 2002
  • The economical aspects should be evaluated to decide the LCC(Life Cycle Cost) of the long life facilities or equipments. Airplane operators evaluate the economical aspects to decide whether they maintain the existing airplane or substitute the new one. This paper presents economic life cycle and economic life cost for both Cessna 172R and Mooney 20J that are operated for flight training in 'H' University. The residual value that is used to calculate the capital recovery rate of the airplane is calculated based on the data from Blue Book published in USA. The annual equivalent on operation cost is calculated based on the 500 flight hours per year which is the annual flight hour for the airplane in 'H' university. This paper showed that economic life cycle of Cessna 172R is nine years since it was introduced in 2001, and Mooney 20J which was introduced in 1991 exceeds the economic life cycle in 2002.

  • PDF

A Study on Modeling of Life Cycle Cost for Magnetic Levitation Train (자기부상열차 시스템의 수명주기비용 모델링에 관한 연구)

  • Lee, Yun-Seong;Kim, Jin-O;Kim, Hyung-Chul;Jang, Dong-Uk
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1076-1080
    • /
    • 2009
  • An analysis of Life Cycle Cost (LCC) is to evaluate the system through the total cost accounting during the total life cycle. Railway system has problem that abundant capital has to be utilized efficiently because railway system is a combined system such as power supply, machines, electric signals. Especially, Magnetic Levitation Train needs high technique and more study about the Life Cycle cost by using the system being developed currently in Korea. Therefore, the Modeling of Life Cycle Cost for Magnetic Levitation Train is proposed considering the tendency of the studies in other countries.

A study on the Life Cycle Cost reduction of the LRT's power systems based on the advanced Systems Engineering (시스템엔지니어링 기법 적용에 따른 경량전철 전기시스템의 생명주기비용 절감에 관한 연구)

  • Choi, Won-Chan;Bae, Joon-Ho;Heo, Jae-Hun;Joo, Ji-Young
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1434-1439
    • /
    • 2011
  • The purpose of this study is based on the optimize the system life cycle cost apply to the advanced systems engineering techniques consideration thought to the system life cycle for the power system which is the one of the major component of the light rail transit system. Generally, the systems engineering techniques apply to the LRT's power systems are not optimize the whole life cycle cost of the power systems because systems engineering management activities are concentrate in performing the key-technology oriented at the construction stage of the dedicated power systems for light rail transit. Through this study, All the stakeholders can be utilize a this advanced systems engineering techniques which is fully considered the life cycle cost through the considering in whole system life cycle (such as concept, design, operation, maintenance and dispose stage as well as construction stage) and adopted by KSX ISO/IEC 15288 system life cycle processes.

  • PDF

Optimal Life Cycle Cost Design of a Bridge (교량의 생애주기비용 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.115-122
    • /
    • 2010
  • The importance of the life cycle cost (LCC) analysis for bridges has been recognized over the last decade. However, it is difficult to predict LCC precisely since the costs occurring throughout the service life of the bridge depend on various parameters such as design, construction, maintenance, and environmental conditions. This paper presents a methodology for the optimal life cycle cost design of a bridge. Total LCC for the service life is calculated as the sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The optimization method is applied to design of a bridge structure with minimal cost, in which the objective function is set to LCC and constraints are formulated on the basis of Korean Bridge Design Code. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on damage probabilities to consider the uncertainty of load and resistance. Repair and rehabilitation cost is determined using load carrying capacity curves and user cost includes traffic operation costs and time delay costs. The optimal life cycle cost design of a bridge is performed and the effects of parameters are investigated.

The Life Cycle Cost Estimation for Domestic Products Motor Block of KTX-1 Considering Periodic Maintenance (유지보수정보 주기를 고려한 KTX-1 모터블럭 개발품의 수명주기비용 예측)

  • Yun, Cha-Jung;Noh, Myoung-Gyu;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.288-292
    • /
    • 2013
  • This paper presents the result of life-cycle cost (LCC) estimation for domestic products propulsion control system (motor block unit) of KTX-1 considering periodic maintenance. Life cycle costing is one of the most effective approaches for the cost analysis of long-life systems such as the KTX-1. Life cycle costing includes the cost of concept design, development, manufacture, operation, maintenance and disposal. To estimate LCC for domestic products motor block unit, it was analyzed physical breakdown structure (PBS) on motor unit in view of maintenance cost and unit cost etc. As a results, life cycle cost on motor block unit increased moderately expect for periodical time when major parts are replaced at the same time. hereafter this results will be reflected in the domestic products being developed.