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Abstract

This paper considers an Ecnomic Order Quantity Model under random life cycle. It is assumed

that the life cyele of the product is unknown; a random variable. Three cost parameters are

considered; ordering cost, inventory carrying cost and salvage cost. Expected total cost is the

cptimization criterion. We show that the optimal cycle length is unique and finite, and present a

simple line search method to find an optimal cyele length,

1. INTRODUCTION

Inventory is the stock of any commodity a
company keeps to be used in the company’s
output. Inventorying of a commodity should be
justified by benefits accruing from one or more
functions served by inventories, Inventories are
used to serve a variety of functions, chief of
which are those related to cconomies of scale in
production and procurement, to fluctuating re-
guircments over time, to production smoothing,
and to improving customer service. The problem
of determining the most desirable order quantity
under rather stable conditions is commonly
known as the classical Economic Order Qu-
antity(EQQ) problem.

There have been extensive discussions in the
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literautre for possible extensions of the basic
EQOQ Model to improve the practicality of the
model. Cheng [2] studied an EOQ medel with
demand-dependent unit production cost and
imperfect production processes. Lev ef af, [8]
considered an EOQ model in which one or more
of the cost or demand parameters will change
at some time in the future. Porteus [9, 10}
developed an extension of the EOQ model in
which the setup cost is veiwed as a decision
variable, rathr than as a parameter, and the
cost of selecting different values of the setup is
included in the formulation explicitly. Trippi
and Lewin [11] adopted the Discounted Cash-
Flows{DCF} approach for the analysis of the
basic EOQ model. Kim et gl. [7] extended
Trippt and Lewin’s [11] work by applying the
DCF approach to various Inventory systems.
Chung [3] studied the DCF approach for the
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analysis of the basic EOQ model in the presence
of the trade credit. Gurnani [5] applied the
DCF approach to the finite planning horizon
EOQ model in which the planning horizon is a
given constant. Gurnani [6]claimed that an
mnfinite planning horizon does not exist in real
life, and a finite horizon inventory model
{accounting for the time wvalue of money) is
theoretically superior and of greater practical
utiity. Chung and Kim [4] proved that
Gurnani’s [5] medel is essentiaily identical to
an infinite planming horizon model since the
planning horizon is assumed io be a given
constant. They also suggested that the
assumption of the infinite planning horizon is
not realistic, and called for a new model which
relaxes the assumption of the infinite planning
horizon.

We consider a finite planning horizon EOQ
model where the planning horizon is dependent
on the product life cycle which is a random
variable. The performance measure Is the
expected total cost. We prove that the objective
function has a unique extreme point which
results in an cptimal cycle length. The optimal
cycle length can be easily obtained by a line
search. We also show how the optimal cycle
length behaves as the parameters change. A
Numerical example is included to illustrate the

model and sclution procedure.
2. MODELLING

The following notations are used;
& =the order quantity
T =the cycle length
P =the product life cycle{random variable)
D =the demand rate per year
&S =the ordering cost per order
k =the inventory carrying cost per unit per
year

¢ =the salvage cost per unit

The assumptions are same as the basic FOQ
model] except the followings:

1. The product life eycle of the product P is a
random variable which follows an exponential
distribution with parameter A.

2. At the end of the product life cycle, the
remnant inventories, if any, can be sold
instantaneuosly at a discount price, i.e. there is
a salvage cost associated with each remnant
inventory.

In order to compute the expected total cost,
we proceed as follows, Suppose that the
product life cycle P fully accommodates first £
cycles, and ends during (£+1)th cycle{See
Figure 1), then cost per cycle until the end of £

Inventory Level

Time

KT P (K+1)T

Figure 1. The Relationship between Product Life Cycle and Inventory Level
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th i i (R+1)T -
cycle is the sum of an ordering cost and J’H (P—kT)ie 4P

holding cost per cycle, that is,

5‘+M)2T2 =-’1§e_m+m(en—)lT—1)
Consequently, total cost up to the end of %th ffk+l‘T(P;kT)2Ae_jde
cycle is le . |
ks+kkl2)T2 b ==z (2¢" —20T —2-AT%)

. . C tly, be simplifi
The total cost during the last cycle, 1e. (£+1) onsequently, C(T) can simplified - as

lows:
th cycle can be obtained by summing up an follows; WDT\ 1
ordering cost, inventory carrying costs, and C(TY= S+cDT+(5+ )'ﬁ
salvage costs for all remnant inventories: "
LTy L DT cD)(e‘ —AT-1)
s+kD[T(P—kT)—M] P
+CDI_T—(P—/ET)] (2) kD(ZéZ —23T 2— 1TH
Now we can compute expected total cost - 24 —1)
from Equation (1) and {2). Since the product =S+eDT

life cycle P follows an expontial distribution
[Sﬁ2+D(kATe T dee +Ac+/1‘cT he' 1)1

xe -1

with parameter A, the expected total inventory
carrying costs, ordering costs and salvage costs,
say C(T), is

bt &+ DT L T
C(T):kgu.l'k;’ [(1)+(2)]re ~ dP (D) Proposition 1.

{a) C(T') has a unique local minimurm on [0, ].

{5)

C(T) can be represented as follows!
{b) The optimal cycle length, T *, satisfics

&+1IT S
cm=s+aon 3 [ ap )
Y S - 7 - (6)
hDT? B+1)T _;p D(h+AC)
(” 2 )kgo Lr de —dp Proof. {2} The first derivative of C(T), say C’
w (R DIT {T), is as follows:
+(RDT—cD
DT=eD) 2 1r C(T)=cD
(P—kT)Ae” " dP LS8 2D AT e e Relé T ™))
= +0T _ _
(D) 3 [ (p-kTyaeTaP e -1
ke " F AT —AcD-SEAD (—~MT—RT+He —h)
g —1¢
We can use the following equations to simplify (@D
. Letl
Equation {4} .
@ T —AR+DT AT)Y=AcDe" — AcD—S5#
E[Ae —e ]=1 i ar
B=0 +D( = AT —-cT+he —h),

ik[rie-“r—e—mﬂw]: 1 AT then C* (T has the same sign as AT). A(T) s
k=0 R=0 a strictly increasing function since
1
=7 FUT)=XeDe” — AbD— AeD+ Mhe’

=AD(h+Ac) (e —1)>0.
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Since f(0)=—SA*<0, and F(o0)>0, there
exists a unigue local minimum on (0, <.

(bl From C{0)=(C (o) =00 and the result of {a),
the optimum cycle length T * satisfies C'(T) =
0. The equation C' (T *)=0 can be rewritten as
Equation (6).

Corollary 1. The optimal cycle length
increases {decreases) as ordering cost increases
(decrcases). Tt decreases (increases) as holding

cost and/or demand rate increases (decreases).

Proof. Let the left hand side of Equation (6)
as g(T). Note that g{T) is a strictly increasing
function of T since ¢’ (T)=A(¢" —1)>0 for

all T>0. The optimal cycle length is an
&7y,

) . SA . . )
increasing, and D—(W(See Figure 2.} The

intersection of which s  strictly
results follow directly from the behavior of the

, S& .
optimal cycle length as DO+ ICT changes.

g(t)y=e'T— 371

SA*

D(h+ Ac)

0 T

Fogure 2. The Behavior of the Optimal Cycle Lenght

From Propesition 1 and Corollary 1, the
optimal ¢ycle length can be easily obtained by
an one-dimensicnal line search method. Then,
an optimal lot size 1s computed using Q* = DT,
(Remark)lf AT<<1, that is

T cycle length

1/4 ™ average preduct life cycle

<1|

then we can substitute
AT*
2

into Equation (6} to get an approximate

e A1+ AT+

optimal cycle length T and an approximate lot
size @ as follows:

#_ 28

¥ Dlh+Ac)

2Ds

=Vt

3. A NUMERICAL EXAMPLE

Suppose S= § 200 per order, I=1,000 units
per year, = $10 per unit per yecar, ¢= $20
per unit, and A=0.5. Then, an optimum cycle
length 0.1398 years is obtained using the
algorithm, and an optimum expected total cost
1s § 3508,
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4, CONCLUSION

We have studied the basic EOQ model in
which the finite planning horizon is a random
variable. This approach improves the prac-
ticality of the assumption on the planning
horizon. We proved that there exisis a umque
local minimum which becomes a global optimal
solution. A simple line search is used to find cut
the optimal solution. One interesting area of
extending this study is to apply the random
planning horizon approach to the other types of
inventory systems, which we are currently

investigating.
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