• Title/Summary/Keyword: Life Cycle Analysis

Search Result 2,042, Processing Time 0.034 seconds

Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS) (연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

A Comparative Analysis of Life Cycle Cost on the Window Glass and the Insulation Film Coated Glass for Window (창호 유리의 단열필름 시공에 따른 생애주기비용 비교 분석)

  • Jeong, Mingu;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.583-590
    • /
    • 2014
  • The purpose of this study is to analyze and compare the life cycle cost of window glass with insulation film and regular glass, to verify an economical window construction method. As an approach method, the thermal performance data of each type of glass was measured using Window 6.3 and ECO2-OD Simulation Program, applied it to the case building to calculate the air conditioning and heating maintenance costs and LCC, and compared the economic feasibility. As a result, installing an additional insulation film prevents the solar heat penetration in the summer, so it reduces the cooling cost, on the other hand, it increased heating cost in winter. From the life cycle cost perspective, the effect of cooling cost reduction does not counterbalance the increase in heating cost and the additional cost from film installation and repair; therefore, the installation of insulation film may not be a proper method.

Development of BIM Functions and System for Construction Project Through Project Life Cycle -Focusing on Bridge Construction Project- (건설프로젝트 생애주기 BIM 활용 기능도출 및 시스템 구축 -교량공사를 중심으로-)

  • Kim, Hyeon-Seung;Moon, Hyoun-Seok;Choi, Gwang-Yeol;Kim, Chang-Hak;Kang, Leen-Seok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.2
    • /
    • pp.11-24
    • /
    • 2012
  • Recently, BIM (Building Information Modeling) technique is being considered as a critical delivery condition for the public projects according to the increase of best practices by practical application of BIM. However, since existing BIM studies are focused on the design and construction phases, those results are not considering the life cycle of a construction project. Therefore, this study suggests an integrated BIM operation process that enables an application of BIM for each phase of a construction project from planning to maintenance phases and develops an integrated BIM system based on the suggested methodologies. This study developed basic BIM functions and its application process by analyzing information systems in each project phase for a bridge construction project. Besides, this study performed case study and survey analysis for construction managers to verify a practical applicability of the developed system. Therefore, it is expected that the integrated BIM system is going to be utilized as a 3D-based integrated information management system considering life cycle of construction projects.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

Life Cycle-based Dietary Guidelines for Koreans - Examination of Historical Changes and Dietitians' Needs - (한국인을 위한 생애주기별 식생활 지침 - 변천 과정 및 영양사 니즈 조사 -)

  • Kim, Suyoun;Asano, Kana;Yun, Soh-Yoon;Lee, Geumyang;Hur, Boyoung;Yoon, Jihyun
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • This study examined the historical changes of and dietitians' needs for the Life Cycle-based Dietary Guidelines for Koreans. Content analysis of relevant documents, a survey of 307 dietitians, and in-depth interviews with eight dietitians were conducted. The dietary guidelines published between 2003 and 2004 included one set of common guidelines and several sets of dietary action guides corresponding to six target groups: pregnant and lactating women, infants and toddlers, children, adolescents, adults, and the elderly. The guidelines were revised between 2008 and 2011 and consisted of six sets of guidelines for the target groups without common guidelines. The dietitians considered five or six as appropriate numbers of guidelines for each group. Needs for separate guidelines for women of child-bearing age and male workers were reported. The dietitians preferred one set of common guidelines with specific action guides for each target group and wanted easier and more specific messages to be included in the new guidelines. It is suggested that the Life Cycle-based Dietary Guidelines for Koreans should be revised to reflect such dietitians' needs.

Analyses of the Application of the Knowledge Domain of Product Lifecycle Management: The Perspective of the 4th Industrial Revolution (4차 산업혁명의 관점에서 제품수명주기관리의 지식영역 적용도 분석)

  • Heo, Kwangho;Lee, Youmi;Yoo, Young-Jin;Kim, Jin-hoi;Oh, You-Sang;Kim, Injai
    • Knowledge Management Research
    • /
    • v.22 no.2
    • /
    • pp.209-225
    • /
    • 2021
  • Product Lifecycle Management is a well-defined management method consisting of 8 knowledge areas. Since the 4th industrial revolution is closely related to smart factories, the importance of product lifecycle management, which effectively manages the entire process from product idea generation to disposal, is emerging. This study analyzed the current and future applications of the knowledge domain of product life cycle management from the perspective of the 4th industrial revolution for experts in the field of product life cycle management. The expert's perception was analyzed from the current point of view and the future point of view to see how the product life cycle management knowledge area is applied in the field. The current and future application degree of the knowledge domain of product life cycle management was analyzed, and whether there was a difference between the knowledge domains in terms of the level of application was analyzed. Based on the analyzed results, its meaning and future flow are presented.

Development of Regression Model to evaluate the indirect costs of Life-Cycle Costs (생애주기비용의 간접비용 산출을 위한 Regression Model의 개발)

  • 조효남;이종순;김충완;박경훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.150-156
    • /
    • 2004
  • Though the concept of Life-Cycle Cost (LCC) itself is not new, its effectiveness for planning, design, rehabilitation and maintenance/management of civil infrastructures is becoming increasingly recognized. For the decision problems as in the case of the LCC of plant facilities, equipments, bridge decks, pavements, etc., the Life-Cycle Cost Analysis (LCCA) is relatively simple, and thus its practical implementation is rather straightforward. However, when it comes to major infrastructures such as bridge, tunnels, underground facilities, etc., the LCCA problem becomes extremely complex because lack of cost data associated with various direct and indirect losses, and the absence of uncertainty data available for the assessment as well. As a result, the LCC studies have been largely limited only to those relatively simple LCCA problems of planning or conceptual design for making decisions. Accordingly, in the recent years, the researchers have pursued extensive studies on the LCC effectiveness mostly related to LCC models and frameworks for civil infrastructures. Moreover, recently the demand on the practical application of LCC effective decisions in design and maintenance is rapidly growing unprecedently in civil engineering practice. Indirction cost is very important on LCC formulation. But that is very difficult and complicate the estimation every LCC. The objective of this paper is to suggest efficient regression model for the estimation of indirect cost approach to the practical application of LCC for the design and rehabilitation of civil. infrastructures considering traffic, traffic network, detour condition, and workzone condition. In this paper, it performed the sensitivity analysis and correlation analysis of parameter for development of regression model of inflection cost.

  • PDF

Development of Monthly Hydrological Cycle Assessment System Using Dynamic Water Balance Model Based on Budyko Framework (Budyko 프레임워크 기반 동적 물수지 모형을 활용한 월 단위 물순환 평가체계 개발)

  • Kim, Kyeung;Hwang, Soonho;Jun, Sang-Min;Lee, Hyunji;Kim, Sinae;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.71-83
    • /
    • 2022
  • In this study, an indicator and assessment system for evaluating the monthly hydrological cycle was prepared using simple factors such as the landuse status of the watershed and topographic characteristics to the dynamic water balance model (DWBM) based on the Budyko framework. The parameters a1 of DWBM are introduced as hydrologic cycle indicators. An indicator estimation regression model was developed using watershed characteristics data for the introduced indicator, and an assessment system was prepared through K-means cluster analysis. The hydrological cycle assessment system developed in this study can assess the hydrological cycle with simple data such as land use, CN, and watershed slope, so it can quickly assess changes in hydrological cycle factors in the past and present. Because of this advantage is expected that the developed assessment system can predict changes in the hydrological cycle and use an auxiliary tool for policymaking.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

Fatigue Life Prediction of Vessel Engine Frame Box by Utilizing Finite Element Analysis (유한요소해석을 활용한 선박용 엔진 프레임 박스의 피로수명의 예측)

  • Lee, Jae-Hoon;Cho, Jin-Rae
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.768-773
    • /
    • 2007
  • This paper presents the numerical estimation of the fatigue life for the welded parts of the engine frame box of the S60MC-C vessel engine. The time-variations of the effective stresses at the critical points during a piston cycle are computed through the finite element analysis, by applying the dynamic loadings that were analytically derived by the kinematic analysis. The fatigue life of the welded parts is estimated by making use of the hot-spot stress extrapolation and the Palmgrem-Minor cumulative damage rule.

  • PDF