• Title/Summary/Keyword: Liapunov function

Search Result 10, Processing Time 0.037 seconds

A method of nonlinear optimal regulator using a Liapunov-like function

  • Kawabata, Hiroaki;Shirao, Yoshiaki;Nagahara, Toshikuni;Inagaki, Yoshio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1060-1065
    • /
    • 1990
  • In general it is difficult to determine a Liapunov function for a given asymptotically stable, nonlinear differential equations system. But, in the system with control inputs, it is feasible to make a given positive function, except for a small area, globally satisfy the conditions of the Liapunov function for the system. We call such a positive function a Liapunov-like function, and propose a method of nonlinear optimal regulator using this Liapunov-like function. We also use the periodic Liapuitov-like friction that suits the system whose equilibrium points exist periodically. The relationship between the Liapunov function and cost function which this nonlinear regulator minimizes is considered using inverse optimal method.

  • PDF

THE INSTABILITY FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Ko, Young-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.757-771
    • /
    • 1999
  • We consider a system of functional differential equations x'(t)=F(t, $x_t$) and obtain conditions on a Liapunov functional and a Liapunov function to ensure the instability of the zero solution.

  • PDF

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF

h-Stability of differential systems via $t_{\infty}$-similarity

  • Park, Sung-Kyu;Koo, Nam-Jip
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.371-383
    • /
    • 1997
  • In recent years M. Pinto introduced the notion of h-stability. He extended the study of exponential stability to a variety of reasonable systems called h-systems. We investigate h-stability for the nonlinear differential systems using the notions of $t_\infty$-similarity and Liapunov functions.

  • PDF

A Study on Stability of Two-Dimensional Digital Filters (이차원디지틀 필터의 안정도에 관한 연구)

  • 최연욱;정우상;김경기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 1984
  • In this paper, the method of the stability test of the Two-Dimensional digital filters is developed. The Liepunov's stability theorem of One-Dimensional discrete system is extended to Two-Dimensional digital filter transfer function which can be transformed twodimensional state space representation. The results developed above is agreed with of mapping method.

  • PDF

A COLLISION AVOIDANCE CONTROL PROBLEM FOR MOVING OBJECTS AND A ROBOT ARM

  • Junhong Ha;Jito Vanualailai
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.135-148
    • /
    • 1998
  • We propose the new controls constructed via the second or direct method of Liapunov to solve the collision avoidance control problems for moving objects and a robot arm in the plane. We also explicate the controlling effect by the simulations.

  • PDF

A Stable Locomotion Control Method for an Autonomous Mobile Robot (자율 이동 로보트를 위한 안정한 주행 제어 방법)

  • Shim, Hyun-Sik;Kim, Jong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.374-376
    • /
    • 1992
  • This paper proposes a stable locomotion control rule for non-holonomic mobile robot. Stability of the rule is proved through the use of a Liapunov function. We have two controller for locomotion control. One is velocity controller, the other is position controller. The proposed controller is position controller whose input to robot are a reference posture and reference velocities. The major objective of this paper is to propose a control rule to find a reasonable velocity command under a assumption which is velocity controller is ideal controller.

  • PDF

NONSELECTIVE HARVESTING OF A PREY-PREDATOR COMMUNITY WITH INFECTED PREY

  • Chattopadhyay, J.;Ghosal, G.;Chaudhuri, K.S.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.835-850
    • /
    • 1999
  • The present paper deals with the problem of nonselective harvesting in a partly infected prey and predator system in which both the susceptible prey and the predator follow the law of logistic growth and some preys avoid predation by hiding. The dynamical behaviour of the system has been studied in both the local and global sense. The optimal policy of exploitation has been derived by using Pontraygin's maximal principle. Numerical analysis and computer simulation of the results have been performed to investigate the golbal properties of the system.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • v.15 no.5
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

Nonlinear control of unicycle-type mobile robot (Unicycle-type 이동로봇의 비선형 제어)

  • 김용진;문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.131-134
    • /
    • 2001
  • This paper proposes a stable control rule for nonlinear unicycle-type mobile robot. The control method uses a local error coordinate system, velocity and distance constants $\kappa$$\_$x/, $\kappa$$\_$y/, and he. Stability of control rule is proved Liapunov function. System input to the mobile robot is reference posture ($\chi$$\_$r/, y$\_$r/, $\theta$$\_$r/)/sup/ $\tau$/ and reference e velocity (ν$\_$r/,$\omega$$\_$r/)$\^$$\tau$/. System output of the mobi-le robot is velocity of driving wheels. We introduce limit velocity for preventing high initial speed. From simulation results, we can see the proposed control rule is stable.

  • PDF