• Title/Summary/Keyword: LiDAR-based point clouds

Search Result 33, Processing Time 0.03 seconds

A Study on the Efficiency of Cadastral Survey in Forest Areas Based on UAV LiDAR (UAV LiDAR 기반의 임야지역 지적측량 효율성 제고 방안)

  • Lee, Ki-Hoon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.54 no.1
    • /
    • pp.5-17
    • /
    • 2024
  • In this study, we examined the applicability of UAV LiDAR for cadastral surveying and proposed the results. For this purpose, an experimental area was selected and point cloud data was created by scanning the terrain using UAV LiDAR. Since there is no comparative verification target in the forest area, the coordinates of the verification points were obtained by directly surveying the ridge and valley lines prescribed by the current law. Based on these points, the point cloud density within a 7cm radius was analyzed. As a result, an average of 46 point clouds were generated within a circle with a radius of 7 centimeters, which can build a more precise topography of the forest area, proving that precise cadastral surveying is possible. In the case of UAV LiDAR, it is expected that the boundaries of forest areas can be extracted more accurately and efficiently without the influence of trees compared to the existing cadastral survey method. This is expected to have many advantages in various fields that want to use it in the future, such as the creation of stereoscopic maps of forest areas and terrain modeling for disaster safety in the forest areas.

Construction of 3D Spatial Information of Vertical Structure by Combining UAS and Terrestrial LiDAR (UAS와 지상 LiDAR 조합에 의한 수직 구조물의 3차원 공간정보 구축)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.57-66
    • /
    • 2019
  • Recently, as a part of the production of spatial information by smart cities, three-dimensional reproduction of structures for reverse engineering has been attracting attention. In particular, terrestrial LiDAR is mainly used for 3D reproduction of structures, and 3D reproduction research by UAS has been actively conducted. However, both technologies produce blind spots due to the shooting angle. This study deals with vertical structures. 3D model implemented through SfM-based image analysis technology using UAS and reproducibility and effectiveness of 3D models by terrestrial LiDAR-based laser scanning are examined. In addition, two 3D models are merged and reviewed to complement the blind spot. For this purpose, UAS based image is acquired for artificial rock wall, VCP and check point are set through GNSS equipment and total station, and 3D model of structure is reproduced by using SfM based image analysis technology. In addition, Through 3D LiDAR scanning, the 3D point cloud of the structure was acquired, and the accuracy of reproduction and completeness of the 3D model based on the checkpoint were compared and reviewed with the UAS-based image analysis results. In particular, accuracy and realistic reproducibility were verified through a combination of point cloud constructed from UAS and terrestrial LiDAR. The results show that UAS - based image analysis is superior in accuracy and 3D model completeness and It is confirmed that accuracy improves with the combination of two methods. As a result of this study, it is expected that UAS and terrestrial LiDAR laser scanning combination can complement and reproduce precise three-dimensional model of vertical structure, so it can be effectively used for spatial information construction, safety diagnosis and maintenance management.

Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM (여름철 UAV 기반 LiDAR, SfM을 이용한 하천 DTM 생성 기법 비교 분석)

  • Gou, Jaejun;Lee, Hyeokjin;Park, Jinseok;Jang, Seongju;Lee, Jonghyuk;Kim, Dongwoo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.3
    • /
    • pp.1-14
    • /
    • 2024
  • Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.

Buffer Growing Method for Road Points Extraction from LiDAR Data

  • Jiangtao Li;Hyo Jong Lee;Gi Sung Cho
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.656-657
    • /
    • 2008
  • Light Detection and Ranging (LiDAR) data has been used to detect the objects of earth surface from huge point clouds gotten from the laser scanning system equipped on airplane. According to the precision of 3~5 points per square meter, objects like buildings, cars and roads can be easily described and constructed. Many various areas, such as hydrological modeling and urban planning adopt this kind of significant data. Researchers have been engaging in finding accurate road networks from LiDAR data recent years. In this paper, A novel algorithm with regard to extracting road points from LiDAR data has been developed based on the continuity and structural characteristics of road networks.

Adaptive Obstacle Avoidance Algorithm using Classification of 2D LiDAR Data (2차원 라이다 센서 데이터 분류를 이용한 적응형 장애물 회피 알고리즘)

  • Lee, Nara;Kwon, Soonhwan;Ryu, Hyejeong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.348-353
    • /
    • 2020
  • This paper presents an adaptive method to avoid obstacles in various environmental settings, using a two-dimensional (2D) LiDAR sensor for mobile robots. While the conventional reaction based smooth nearness diagram (SND) algorithms use a fixed safety distance criterion, the proposed algorithm autonomously changes the safety criterion considering the obstacle density around a robot. The fixed safety criterion for the whole SND obstacle avoidance process can induce inefficient motion controls in terms of the travel distance and action smoothness. We applied a multinomial logistic regression algorithm, softmax regression, to classify 2D LiDAR point clouds into seven obstacle structure classes. The trained model was used to recognize a current obstacle density situation using newly obtained 2D LiDAR data. Through the classification, the robot adaptively modifies the safety distance criterion according to the change in its environment. We experimentally verified that the motion controls generated by the proposed adaptive algorithm were smoother and more efficient compared to those of the conventional SND algorithms.

Key Point Extraction from LiDAR Data for 3D Modeling (3차원 모델링을 위한 라이다 데이터로부터 특징점 추출 방법)

  • Lee, Dae Geon;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.479-493
    • /
    • 2016
  • LiDAR(Light Detection and Ranging) data acquired from ALS(Airborne Laser Scanner) has been intensively utilized to reconstruct object models. Especially, researches for 3D modeling from LiDAR data have been performed to establish high quality spatial information such as precise 3D city models and true orthoimages efficiently. To reconstruct object models from irregularly distributed LiDAR point clouds, sensor calibration, noise removal, filtering to separate objects from ground surfaces are required as pre-processing. Classification and segmentation based on geometric homogeneity of the features, grouping and representation of the segmented surfaces, topological analysis of the surface patches for modeling, and accuracy assessment are accompanied by modeling procedure. While many modeling methods are based on the segmentation process, this paper proposed to extract key points directly for building modeling without segmentation. The method was applied to simulated and real data sets with various roof shapes. The results demonstrate feasibility of the proposed method through the accuracy analysis.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

A Fast Correspondence Matching for Iterative Closest Point Algorithm (ICP 계산속도 향상을 위한 빠른 Correspondence 매칭 방법)

  • Shin, Gunhee;Choi, Jaehee;Kim, Kwangki
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.373-380
    • /
    • 2022
  • This paper considers a method of fast correspondence matching for iterative closest point (ICP) algorithm. In robotics, the ICP algorithm and its variants have been widely used for pose estimation by finding the translation and rotation that best align two point clouds. In computational perspectives, the main difficulty is to find the correspondence point on the reference point cloud to each observed point. Jump-table-based correspondence matching is one of the methods for reducing computation time. This paper proposes a method that corrects errors in an existing jump-table-based correspondence matching algorithm. The criterion activating the use of jump-table is modified so that the correspondence matching can be applied to the situations, such as point-cloud registration problems with highly curved surfaces, for which the existing correspondence-matching method is non-applicable. For demonstration, both hardware and simulation experiments are performed. In a hardware experiment using Hokuyo-10LX LiDAR sensor, our new algorithm shows 100% correspondence matching accuracy and 88% decrease in computation time. Using the F1TENTH simulator, the proposed algorithm is tested for an autonomous driving scenario with 2D range-bearing point cloud data and also shows 100% correspondence matching accuracy.

3-Dimensional Building Reconstruction with Airborne LiDAR Data

  • Lee, Dong-Cheon;Yom, Jae-Hong;Kwon, Jay-Hyoun;We, Gwang-Jae
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.123-130
    • /
    • 2002
  • LiDAR (Light Detection And Ranging) system has a profound impact on geoinformatics. The laser mapping system is now recognized as being a viable system to produce the digital surface model rapidly and efficiently. Indeed the number of its applications and users has grown at a surprising rate in recent years. Interest is now focused on the reconstruction of buildings in urban areas from LiDAR data. Although with present technology objects can be extracted and reconstructed automatically using LiDAR data, the quality issue of the results is still major concern in terms of geometric accuracy. It would be enormously beneficial to the geoinformatics industry if geometrically accurate modeling of topographic surface including man-made objects could be produced automatically. The objectives of this study are to reconstruct buildings using airborne LiDAR data and to evaluate accuracy of the result. In these regards, firstly systematic errors involved with ALS (Airborne Laser Scanning) system are introduced. Secondly, the overall LiDAR data quality was estimated based on the ground check points, then classifying the laser points was performed. In this study, buildings were reconstructed from the classified as building laser point clouds. The most likely planar surfaces were estimated by the least-square method using the laser points classified as being planes. Intersecting lines of the planes were then computed and these were defined as the building boundaries. Finally, quality of the reconstructed building was evaluated.

  • PDF